Дополнительные главы математики

Кожанов Александр Иванович

набрали: Сивых М.Г. (группа 6204) Яковлев А.В. (группа 6204) Никулин В.М. (группа 6203)

Содержание

1	Линейные ограниченные операторы в нормированных про- странствах	3
2	Обратные операторы	17
3	Функционалы в нормированных пространствах 3.1 Сопряжённые операторы	22 26 27
4	Компактные множества в нормированных пространствах 4.1 Критерии относительной компактности в некоторых функциональных пространствах	30 38
5	Теория разрешимости функциональных уравнений 5.1 Уравнения с вполне непрерывными операторами 5.2 Уравнения Фредгольма 5.2.1 Уравнение Фредгольма первого рода 5.3 Метод малого параметра 5.3.1 Аналитический подход 5.3.2 Метод продолжения по параметру 5.4 Теорема Шаудера и следствия из нее	39 42 53 54 54 56 58
6	Самосопряжённые операторы. Спектр и резольвента. 6.1 Элементы спектральной теории	61 67
7	Топологические пространства и пространства сходимости. 7.1 Пространства сходимости (Фреше)	77 79
8	Дифференциальное исчисление в нормированных простраствах.	н- 80
9	Метод Ньютона-Канторовича	84
10	Решения	89

1 Линейные ограниченные операторы в нормированных пространствах

Опр 1.1. Пусть X — некоторое непустое множество. Функция $\rho(x,y): X \times X \to \mathbb{R}_+$ называется метрикой, если $\forall x,y,z \in X$ выполняется:

1.
$$\rho(x,y) = 0 \Leftrightarrow x = y$$

2.
$$\rho(x,y) = \rho(y,x)$$

3.
$$\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$$

Пара (X, ρ) называется метрическим пространством.

Опр 1.2.

$$B_R(x_0) = \{x \in X \mid \rho(x, x_0) < R\}$$
 — открытый шар.
 $\overline{B_R}(x_0) = \{x \in X \mid \rho(x, x_0) \leq R\}$ — замкнутый шар.
 $S_R(x_0) = \{x \in X \mid \rho(x, x_0) = R\}$ — сфера.

Опр 1.3. Последовательность $\{x_n\}$ сходится κ x_0 , если числовая последовательность $\rho(x_n, x_0)$ стремится κ нулю:

$$\rho(x_n, x_0) \xrightarrow[n \to \infty]{} 0$$

Опр 1.4. Последовательность $\{x_n\}$ называется фундаментальной (сходящейся в себе), если

$$\forall \varepsilon > 0 \,\exists N = N(\varepsilon) \, | \, \forall n > N, \, \forall m \geqslant 0 : \, \rho(x_n, x_{n+m}) < \varepsilon$$

Опр 1.5. Метрическое пространство называется полным, если любая фундаментальная последовательность имеет предел, принадлежащий этому же пространству.

Замечание 1.1. Пространство может быть полным по одной метрике и неполным по другой.

Опр 1.6. Множесство X называется линейным (векторным) пространством над $\mathbb{R}(\mathbb{C})$, если в нём определены:

1. операция сложения:

$$\forall x,y \in X$$
 соответствующий элемент $(x+y) \in X$

2. операция умножения на скаляр:

$$\forall x \in X \ u \ \forall \lambda \in \mathbb{R}(\mathbb{C}) \ coombe m c m в ующий элемент (\lambda x) \in X$$

Причём $\forall x, y, z \in X \ u \ \forall \lambda, \mu \in \mathbb{R}(\mathbb{C})$ выполняется:

$$1. \ x + y = y + x$$

2.
$$(x+y) + z = x + (y+z)$$

3.
$$\exists \theta \in X \mid x + \theta = \theta + x = x$$

4.
$$(\lambda + \mu)x = \lambda x + \mu x$$

- 5. $\lambda(x+y) = \lambda x + \lambda y$
- 6. $\lambda(\mu x) = (\lambda \mu)x$
- 7. $1 \cdot x = x$

3амечание 1.2. Зачастую не будем делать различий между нулём θ пространства X и скалярным нулём.

Опр 1.7. Линейное пространство X называется нормированным, если существует отображение $\|\cdot\|: X \to \mathbb{R}_+$, удовлетворяющее следующим условиям:

- 1. $||x|| = 0 \Leftrightarrow x = \theta$
- 2. $\|\lambda x\| = |\lambda| \cdot \|x\|$
- 3. $||x + y|| \le ||x|| + ||y||$

Замечание 1.3. Всякое нормированное пространство является метрическим с метрикой:

$$\rho(x,y) = ||x - y||$$

Опр 1.8. Нормированное пространство, являющееся полным по данной метрике $(\rho(x,y) = ||x-y||)$, называется банаховым пространством.

В дальнейшем будем считать, что X, Y — линейные (векторные) пространства над \mathbb{R} (другие случаи оговариваются специально).

Пусть $A: X \to Y$ — оператор (отображение).

Опр 1.9. А называется линейным оператором, если выполняется:

- 1. $A(x_1 + x_2) = Ax_1 + Ax_2$, $\forall x_1, x_2 \in X \ (a\partial \partial umu \varepsilon hocm b)$;
- 2. $A(\lambda x) = \lambda Ax$, $\forall \lambda \in \mathbb{R}, \forall x \in X \ (o\partial hopo\partial hocmb)$.

Замечание 1.4. Область значений оператора A обозначается R(A), а область определения — D(A).

Пусть X, Y — нормированные пространства.

Опр 1.10. Линейный оператор A называется ограниченным, если $\exists M - \text{const}, M \geqslant 0 \mid \forall x \in X : ||Ax||_Y \leqslant M||x||_X.$

Опр 1.11. Оператор A называется непрерывным в точке x_0 , если для произвольной сходящейся в X последовательности $\{x_n\}$ выполняется:

$$x_n \xrightarrow[n \to \infty]{} x_0 \Longrightarrow Ax_n \xrightarrow[n \to \infty]{} Ax_0$$

Опр 1.12. Оператор A называется непрерывным, если он непрерывен в каждой точке области определения.

Замечание 1.5. Для непрерывности линейного оператора достаточно потребовать непрерывность в одной точке.

Теорема 1.1. Линейный оператор $A: X \to Y$ непрерывен $\Leftrightarrow A$ ограничен.

Упр 1.1. Доказать теорему 1.1. (см. стр. 89)

Опр 1.13. Нормой оператора А называется следующее число:

$$||A|| = \inf\{M \mid \forall x \in X : ||Ax||_Y \leqslant M||x||_X\}$$

Замечание 1.6.

- 1. Множество $\{M \mid ||Ax|| \leq M ||x|| \, \forall x \in X\}$ ограничено снизу, следовательно, точная нижняя грань существует.
- 2. Из определения: $||Ax|| \le ||A|| \cdot ||x||$

Утв 1.1. Пусть A- линейный ограниченный оператор. Тогда:

1.
$$||A|| = \sup_{\substack{x \in X \\ ||x||_X = 1}} ||Ax||_Y$$

2.
$$||A|| = \sup_{\substack{x \in X \\ ||x||_X \neq 0}} \frac{||Ax||_Y}{||x||_X}$$

Упр 1.2. Доказать утв. 1.1 (см. стр. 89)

Пусть X — метрическое пространство; $M, M_1 \subset X$.

Опр 1.14. M называется всюду плотным в M_1 , если $\overline{M} \supseteq M_1$.

Опр 1.15. Метрическое пространство называется сепарабельным, если оно имеет счётное всюду плотное подмножество.

 $\Pi pumep 1.1. \mathbb{R}$ - сепарабельно.

Опр 1.16. M называется нигде не плотным в X, если $\forall x_0 \in X, r \in \mathbb{R}$: $\exists \widetilde{x} \in X, \widetilde{r} \in \mathbb{R} \mid B_{\widetilde{r}}(\widetilde{x}) \subset B_r(x_0)$, причём $B_{\widetilde{r}}(\widetilde{x}) \cap M = \varnothing$.

 $\Pi pumep \ 1.2. \ \mathbb{Z}$ - нигде не плотно в \mathbb{Q} .

Теорема 1.2. Пусть X — полное метрическое пространство. $\{M_n\}$ — последовательность замкнутых множеств:

$$M_{n+1}\subset M_n\subset\ldots\subset M_1\subset M_0$$
, причём $\lim_{n\to\infty}{
m diam}M_n=0$, где ${
m diam}M_n=\sup_{x,y\in M_n}
ho(x,y).$

Тогда $\exists !x \mid \forall n \in \mathbb{N} : x \in M_n$.

Доказательство. (В курсе лекций не приводилось)

Рассмотрим последовательность $\{x_n\}$ такую, что $\forall n \in \mathbb{N}: x_n \in M_n$. Т.к. $\lim_{n \to \infty} \operatorname{diam} M_n = 0$, то $\forall \varepsilon > 0 \exists N = N(\varepsilon) \mid \forall n > N, \, \forall p \geqslant 0$:

$$\rho(x_n, x_{n+p}) < \varepsilon$$

Т.е. получаем, что $\{x_n\}$ — фундаментальная.

Пространство X является полным, следовательно, $\lim_{n\to\infty} x_n = x \in X$.

Зафиксируем число k и рассмотрим множество M_k . Имеем: $\forall p \geqslant 0$ $x_{k+p} \in M_k$. По условию множество M_k является замкнутым, следовательно, оно содержит в себе предел последовательности $\{x_{k+p}\}_{p\in\mathbb{N}}$, т.е. $\lim_{p\to\infty} x_{k+p} = x \in M_k$. В силу произвольности выбора k существование точки, принадлежащей всем множествам M_k , доказано.

Докажем единственность от противного. Пусть $\exists y \mid \forall n \in \mathbb{N} : y \in M_n$, $y \neq x$, т.е. $\rho(x,y) = \delta > 0$. Имеем:

$$\delta = \rho(x, y) \leqslant \rho(x, x_n) + \rho(x_n, y) \leqslant 2 \operatorname{diam} M_n$$

Переходя к пределу $n \to \infty$ приходим к противоречию $(0 < \delta \leqslant 0)$.

Теорема 1.3. Пусть X — метрическое пространство, и пусть для любой последовательности замкнутых шаров $\{B_n\}$ из X таких, что

$$\ldots \subset B_{n+1} \subset B_n \subset \ldots \subset B_1$$
 и $\lim_{n \to \infty} r_n = 0$, где r_n — радиус B_n

выполняется:

$$\bigcap_{n=1}^{\infty} B_n \neq \emptyset$$

Тогда X — полное пространство.

Доказательство. (В курсе лекций не приводилось)

Пусть дана фундаментальная последовательность $\{x_n\} \subset X$. Выберем n_k таким образом, что:

$$\rho(x_{n_k+p}, x_{n_k}) < \frac{1}{2^k} \quad \forall p \geqslant 0$$

Пусть $\overline{B_k} = B_{\frac{1}{2k-1}}(x_{n_k})$. Тогда:

1. $\overline{B_{k+1}} \subset \overline{B_k}$. Действительно:

$$x \in \overline{B_{k+1}} \Rightarrow \rho(x, x_{n_k}) \leqslant \rho(x, x_{n_{k+1}}) + \rho(x_{n_{k+1}}, x_{n_k}) \leqslant$$
$$\leqslant \frac{1}{2^k} + \frac{1}{2^k} = \frac{1}{2^{k-1}} \Rightarrow x \in \overline{B_k}$$

2.
$$\lim_{k \to \infty} r_k = \lim_{k \to \infty} \frac{1}{2^{k-1}} = 0$$

По условию теоремы $\exists x_0 \mid \forall k: x_0 \in \overline{B_k}$. Покажем, что $x_n \xrightarrow[n \to \infty]{} x_0$. Т.к. $\forall k: x_{n_k}, x_0 \in \overline{B_k}$, то

$$\rho(x_{n_k}, x_0) \leqslant \frac{1}{2^{k-1}} \xrightarrow[k \to \infty]{} 0$$

Отсюда

$$\rho(x_n, x_0) \leqslant \rho(x_n, x_{n_k}) + \rho(x_{n_k}, x_0) \xrightarrow[n \to \infty]{} 0 \Rightarrow \lim_{n \to \infty} x_n = x_0$$

Опр 1.17. Метрическое пространство X называется пространством 1-ой категории, если $X = \bigcup_{n=1}^{\infty} M_n$, где M_n – нигде не плотное в X множество $\forall n$.

Опр 1.18. Метрическое пространство X называется пространством 2 - ой категории, если оно не является пространством 1-ой категории.

Теорема 1.4. Любое полное метрическое пространство является пространством 2-ой категории.

Доказательство. От противного.

Пусть X представимо в виде $X = \bigcup_{n=1}^{\infty} M_n$, где M_n — нигде не плотное в X множество $\forall n$.

Возьмём шар $B_1(x_0)$ единичного радиуса с центром в точке $x_0 \in X$. Поскольку множество M_1 нигде не плотно в X, то:

$$\exists R_1 \in \mathbb{R}, \ R_1 > 0, \ \exists x_1 \in X \mid$$
 $B_{R_1}(x_1) \subset B_1(x_0)$ и $B_{R_1}(x_1) \cap M_1 = \emptyset$.

Считаем, что $R_1 < \frac{1}{2}$ (иначе его можно уменьшить). Далее, поскольку множество M_2 нигде не плотно в X, получаем:

$$\exists R_2 \in \mathbb{R}, \ R_2 > 0, \ \exists x_2 \in X \mid$$
 $B_{R_2}(x_2) \subset B_{R_1}(x_1)$ и $B_{R_2}(x_2) \cap M_2 = \emptyset,$

заметим, что поскольку $B_{R_1}(x_1)\cap M_1=\varnothing$, то и $B_{R_2}(x_2)\cap M_1=\varnothing$. Считаем, что $R_2<\frac{1}{4}$.

По аналогии строим шары $\{B_{R_n}(x_n)\}$, такие что:

$$\ldots \subset B_{R_{n+1}}(x_{n+1}) \subset B_{R_n}(x_n) \subset \ldots,$$

где $R_n < \frac{1}{2^n}$, (т.е. $R_n \xrightarrow[n \to \infty]{} 0$) и $\forall n$ выполняется, что $B_{R_n}(x_n)$ не содержит точек из $M_1, \dots M_n$.

Тогда по теореме 1.2 $\exists x^* | \forall n \in \mathbb{N} : x^* \in B_{R_n}(x_n)$. Но $x^* \notin M_n \forall n \Rightarrow x^* \notin X$, что противоречит полноте пространства X.

П

Опр 1.19. Метрические пространства X и Y изометричны, если существует такое отображение $\mathcal{J}: X \to Y$, для которого выполняется:

1.
$$\mathcal{J}(x_1) = \mathcal{J}(x_2) \Rightarrow x_1 = x_2$$

2.
$$\forall y \in Y \,\exists x \in X \, | \, y = \mathcal{J}(x)$$

3.
$$\forall x_1, x_2 \in X : \rho_X(x_1, x_2) = \rho_Y(\mathcal{J}(x_1), \mathcal{J}(x_2))$$

Т.е. изометрия — это такая биекция, которая сохраняет расстояние между соответствующими элементами.

Теорема 1.5 (О пополнении). Для любого метрического пространства X с метрикой ρ существует метрическое пространство (Y, ρ_1) такое, что

- 1. Y полное
- 2. $\exists Y_1$ подпространство $Y \mid Y_1$ всюду плотно в Y (т.е. $\overline{Y_1} = Y$)
- $3. \ X$ и Y_1 изометричны

Доказательство. Введём отношение эквивалентности.

Две последовательности $\{x_n\}$ и $\{y_n\}$ назовём эквивалентными, если $\lim_{n\to\infty} \rho(x_n,y_n)=0.$

∞ Имеем свойство:

$$|\rho(x_n, y_n) - \rho(x_m, y_m)| \leqslant \rho(x_n, x_m) + \rho(y_n, y_m) \ (\bigstar)$$

Упр **1.3.** Доказать свойство (★). (См. стр. 89)

Т.е. если $\{x_n\}$ и $\{y_n\}$ — фундаментальные последовательности, то $\rho(x_n,y_n)$ — фундаментальная числовая последовательность. Таким образом, получаем, что предел $\lim_{n\to\infty}\rho(x_n,y_n)$ существует и конечен.

Положим Y — пространство классов эквивалентности последовательностей, каждая из которых фундаментальная в X.

Пусть $\rho_1(x^*,y^*) = \lim_{n\to\infty} \rho(x_n,y_n)$ (определение корректно в силу указанного выше свойства), где последовательности $\{x_n\}$ и $\{y_n\}$ — это представители x^*,y^* .

Имеем утверждения:

1. ρ_1 - метрика.

Упр 1.4. Доказать, что ρ_1 - метрика (Проверить аксиомы метрики). (См. стр. 90)

2. Величина $\rho_1(x^*,y^*)$ не зависит от выбора представителя x^* и y^* , т.к. $|\rho(x_n,y_n)-\rho(x_n',y_n')|\leqslant \rho(x_n,x_n')+\rho(y_n,y_n')\xrightarrow{n\to\infty}0$, поскольку $\lim_{n\to\infty}\rho(x_n,x_n')=\lim_{n\to\infty}\rho(y_n,y_n')=0$. Здесь $\{x_n\}$ и $\{x_n'\}$ —представители x^* , а $\{y_n\}$ и $\{y_n'\}$ —представители y^*

Таким образом, получаем, что Y — пространство с метрикой.

Пусть Y_1 состоит из всех классов $x^* \in Y$, среди последовательностей которых имеется стационарная последовательность:

 $x^* \in Y_1$, если у x^* есть представитель вида: $(x, x, x, \dots x, \dots), x \in X$.

 Y_1 — подпространство Y.

 Y_1 изометрично X, где изометрия задаётся по правилу:

$$f: x \to (x, x, x, \dots, x, \dots) \in x^*$$

(по элементу x строится стационарная последовательность). Т.к. в классе x^* может быть только одна стационарная последовательность, то данное отображение является взаимно однозначным.

Причём, если $\{x,x,\ldots\} \in x^*, \ \{y,y,\ldots\} \in y^*,$ то:

$$\rho_1(x^*, y^*) = \lim \rho(\{x\}, \{y\}) = \rho(x, y)$$

Таким образом, третий пункт теоремы доказан.

Докажем, что Y_1 плотно в Y. Возьмём $x^* \in Y$, $x^* = (x_1, x_2, \dots x_n, \dots)$. Построим последовательность элементов из Y_1 :

$$x_n^* = (x_n, x_n, \dots x_n, \dots)$$

Очевидно, что

$$\lim_{n \to \infty} \rho_1(x^*, x_n^*) = \lim_{n \to \infty} \lim_{m \to \infty} \rho(x_n, x_m) = 0$$

Тогда получаем, что Y_1 плотно в Y. Второй пункт теоремы доказан.

Осталось показать, что пространство Y является полным. Докажем это двумя способами: с и без использования уже доказанных пунктов 2 и 3.

І. С использованием пунктов 2 и 3. Выберем для этого в Y фундаментальную последовательность $\{x_n^*\}$. По доказанному выше $(Y_1$ плотно в Y), для каждого элемента x_m^* существует последовательность $\{x_n^{(m)}\}$ элементов пространства Y_1 , сходящаяся к x_m^* :

$$\rho_1(x_n^{(m)}, x_m^*) \xrightarrow[n \to \infty]{} 0.$$

Положим $\widetilde{x}_n = x_n^{(n)} \in Y_1$. Из изометрии пространств X и Y_1 следует, что существует последовательность $\{x_n\}$ элементов пространства X, соответствующая последовательности $\{\widetilde{x}_n\}$ элементов пространства Y_1 . Поскольку последовательность $\{\widetilde{x}_n\}$ фундаментальная (приближает фундаментальную последовательность $\{x_n^*\}$), то получаем, что последовательность $\{x_n\}$ также является фундаментальной.

Обозначим через x^* класс с представителем $\{x_n\}, x^* \in Y$. Имеем:

$$\rho_1(x_n^*, x^*) \leqslant \rho_1(x_n^*, \widetilde{x}_n) + \rho_1(\widetilde{x}_n, x^*) \xrightarrow[n \to \infty]{} 0$$
, поскольку

- 1) $\rho_1(x_n^*,\widetilde{x}_n) \to 0$, т.к. Y_1 всюду плотно в Y.
- 2) $\rho_1(\widetilde{x}_n, x^*) \to 0$, т.к. Y_1 изометрично X и в силу выбора x^* .

Таким образом, получили, что предел фундаментальной последовательности из Y принадлежит Y. Т.е. Y — полное пространство.

II. Без использования пунктов 2 и 3. Пусть $\{x_n^*\}$ — фундаментальная последовательность элементов Y, т.е. $\rho_1(x_n^*, x_m^*) \xrightarrow[n,m\to\infty]{} 0$. В каждом классе x_n^* выберем представителя, т.е. фундаментальную последовательность $\{x_n^{(n)}\}$.

Поскольку $\{x_n^{(n)}\}$ — фундаментальная, то:

$$\forall n \exists k_n \, | \, \rho(x_p^{(n)}, x_{k_n}^{(n)}) < \frac{1}{n} \text{ при } p > k_n.$$
 (1)

Рассмотрим последовательность $\{x_{k_1}^{(1)}, x_{k_2}^{(2)}, \ldots\}$. Покажем, что она фундаментальная. Имеем:

$$\rho(x_{k_n}^{(n)}, x_{k_m}^{(m)}) \leqslant \rho(x_{k_n}^{(n)}, x_p^{(n)}) + \rho(x_p^{(n)}, x_p^{(m)}) + \rho(x_p^{(m)}, x_{k_m}^{(m)}).$$

Выберем $\varepsilon > 0$. Т.к. $\rho_1(x_n^*, x_m^*) \xrightarrow[n,m\to\infty]{} 0$, то $\exists n_0 | \forall n \geqslant n_0, \ m \geqslant n_0$, :

$$\rho_1(x_n^*, x_m^*) = \lim_{p \to \infty} \rho(x_p^{(n)}, x_p^{(m)}) < \frac{\varepsilon}{2}.$$

Поэтому, при достаточно больших p и $m, n \geqslant n_0$:

$$\rho(x_p^{(n)}, x_p^{(m)}) < \frac{\varepsilon}{2}.$$

При этом можно считать, что $\frac{1}{n_0} < \frac{\varepsilon}{4}$. Зафиксируем m,n так, чтобы выполнялось $m,n>n_0$ и выберем pнастолько большим, чтобы $p > k_m$, $p > k_n$. Тогда из (1) следует:

$$\rho(x_p^{(n)}, x_{k_n}^{(n)}) < \frac{1}{n} < \frac{\varepsilon}{4};$$

$$\rho(x_p^{(m)}, x_{k_m}^{(m)}) < \frac{1}{m} < \frac{\varepsilon}{4}.$$

В итоге получаем, что:

$$\rho(x_{k_n}^{(n)}, x_{k_m}^{(m)}) < \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} = \varepsilon$$

Т.е. $\{x_{k_n}^{(n)}\}$ — фундаментальная.

Обозначим через x^* класс эквивалентности, содержащий фундаментальную последовательность $\{x_{k_n}^{(n)}\}$. Покажем, что $x_n^* \to x^*$.

Имеем:

$$\rho_1(x_n^*, x^*) = \lim_{p \to \infty} \rho(x_p^{(n)}, x_{k_p}^{(p)});$$

$$\rho(x_p^{(n)}, x_{k_p}^{(p)}) \leqslant \rho(x_p^{(n)}, x_{k_n}^{(n)}) + \rho(x_{k_n}^{(n)}, x_{k_p}^{(p)}) < \frac{1}{n} + \rho(x_{k_n}^{(n)}, x_{k_p}^{(p)})$$

Поскольку $\{x_{k_n}^{(n)}\}$ — фундаментальная, то для заданного $\varepsilon>0$ $\exists n_0$ такой, что при $p,n\geqslant n_0$ выполняется:

$$\rho(x_{k_n}^{(n)}, x_{k_p}^{(p)}) < \frac{\varepsilon}{2}$$

Тогда при $n \geqslant n_0$ имеем:

$$\rho_1(x_n^*,x^*) = \lim_{p\to\infty} \rho(x_p^{(n)},x_{k_p}^{(p)}) < \frac{1}{n} + \frac{\varepsilon}{2} \leqslant$$
 $\leqslant \frac{1}{n_0} + \frac{\varepsilon}{2} < \left($ без ограничения общности считаем, что $\frac{1}{n_0} < \frac{\varepsilon}{2}\right) < \varepsilon.$

Таким образом, показали, что $x_n^* \to x^*$ при $n \to \infty$, т.е. пространство Y — полное.

__(Лекция №2, 13.09.2010)

 $X,\,Y$ — нормированные пространства. A — линейный оператор, не обязательно ограниченный. Обозначим:

$$X_n = \{ x \in X \mid ||Ax||_Y \le n ||x||_X \}$$

Лемма 1.1. Пусть X — банахово пространство. A — линейный оператор. Тогда X представимо в виде $X = \bigcup_{n=1} X_n$, причём хотя бы одно X_n всюду плотно в X.

Доказательство. Заметим, что каждое $X_n \neq \emptyset$, т.к. $\forall n: \theta \in X_n$.

Далее, для любого ненулевого фиксированного $x \in X$ соотношение $\frac{\|Ax\|}{\|x\|}$ является конечной величиной $\Rightarrow \exists n \in \mathbb{N} \, \big| \, \frac{\|Ax\|}{\|x\|} \leqslant n \Rightarrow x \in X_n$.

Следовательно, $X = \bigcup_{n=0}^{\infty} X_n$.

По теореме 1.4 полное метрическое пространство не может быть счётным (конечным) объединением нигде не плотных множеств $\Rightarrow \exists n_0 \mid X_{n_0}$ не является нигде не плотным, что означает:

$$\exists x_0, R_0 > 0 \mid \forall x, r > 0, B_r(x) \subset B_{R_0}(x_0) : B_r(x) \cap X_{n_0} \neq \varnothing.$$

Отсюда получаем, что $B_{R_0}(x_0) \cap X_{n_0}$ — всюду плотно в $B_{R_0}(x_0)$.

Рассмотрим шар $B_{R_1}(x_1)$ такой, что $\overline{B_{R_1}}(x_1) \subset B_{R_0}(x_0)$, где $x_1 \in X_{n_0}$. Выберем такой x, что $||x|| = R_1$. Элемент $x + x_1 \in B_{R_1}(x_1)$, т.к.

$$||x + x_1 - x_1|| = R_1$$

Можем также считать, что

$$\overline{B_{R_1}}(x_1) \subset \overline{X_{n_0}}$$

Следовательно, $\exists \{z_k\}$ — последовательность элементов из $B_{R_1}(x_1) \cap X_{n_0}$

такая, что $z_k \xrightarrow[k \to \infty]{k \to \infty} x + x_1$. Положим $\widetilde{x}_k = z_k - x_1$. Очевидно, что $\widetilde{x}_k \xrightarrow[k \to \infty]{k \to \infty} x$, при этом $\|\widetilde{x}_k\| \leqslant R_1$. Можем считать, что для любого k (лишние отбросим) верно следующее:

$$\frac{R_1}{2} \leqslant \|\widetilde{x}_k\| \leqslant R_1$$

Напомним, что $z_k, x_1 \in X_{n_0}$.

Верна оценка:

$$||A\widetilde{x}_k|| = ||Az_k - Ax_1|| \le ||Az_k|| + ||Ax_1|| \le n_0(||z_k|| + ||x_1||) \le$$
$$\le n_0(2||x_1|| + ||\widetilde{x}_k||) \le \frac{2n_0(R_1 + 2||x_1||)}{R_1} \cdot ||\widetilde{x}_k||$$

Можно выбрать наименьшее натуральное n такое, что:

$$\frac{2n_0(R_1+2\|x_1\|)}{R_1} \leqslant n \qquad \qquad \begin{aligned} x_1 - & \text{фиксированное} \Rightarrow \\ & \Rightarrow \|x_1\| - \text{const} \end{aligned}$$

Отсюда: $\|A\widetilde{x}_k\| \leqslant n\|\widetilde{x}_k\| \Rightarrow \widetilde{x}_k \in X_n$. Тем самым мы доказали, что каждый элемент x такой, что $\|x\| = R_1$ аппроксимируется элементами из множества X_n .

Пусть теперь x — произвольный элемент из X. Положим:

$$y = \frac{R_1}{\|x\|} \cdot x$$

Очевидно, что $\|y\| = R_1$. Найдётся последовательность $\{y_k\}, y_k \in X_n$ такая, что $y_x \xrightarrow[k\to\infty]{} y$. Положим:

$$x_k = y_k \frac{\|x\|}{R_1} \quad \Rightarrow \quad x_k \xrightarrow[k \to \infty]{} x$$

Получаем:

$$||Ax_k|| = \frac{||x||}{R_1} ||Ay_k|| \le \frac{n||x||}{R_1} ||y_k|| = n||x_k||$$

Это означает, что $x_k \in X_n$. Таким образом, X_n всюду плотно в X.

Опр 1.20. Пусть X — линейное пространство, $L \subset X$, $L \neq \emptyset$. L называется линейным многообразием, если $\forall x_1 \dots x_n \in L, \forall \alpha_1 \dots \alpha_n \in \mathbb{R}$:

$$\alpha_1 x_1 + \ldots + \alpha_n x_n \in L$$

Замечание 1.7. Если L—линейное многообразие в X, то $\theta_X \in L$.

Опр 1.21. Пусть X — нормированное пространство, $M \subset X$ и пусть задан оператор $A: M \to Y$. Оператор $\widetilde{A}: X \to Y$ называется продолжением оператора $A \in M$ на X, если выполняется:

$$\widetilde{A}|_{M} = A$$

Теорема 1.6. Пусть X, Y—нормированные пространства, L—линейное многообразие в X, L всюду плотно в X, Y—банахово. Пусть задан $A: X \to Y$ —линейный ограниченный оператор, D(A) = L.

Тогда оператор A можно продолжить на всё X без увеличения нормы, т.е. $\exists \widetilde{A}$ такой, что $\widetilde{A}|_L = A$, $\|\widetilde{A}\| = \|A\|$ и $D(\widetilde{A}) = X$.

Доказательство. (В курсе лекций не приводилось)

Выберем произвольный элемент $x \in X \setminus L$. Т.к. L всюду плотно в X, то $\exists x_n \in L$ такая, что $x_n \xrightarrow[n \to \infty]{} x$. Определим оператор \widetilde{A} :

$$\widetilde{A}x = \begin{cases} \lim_{n \to \infty} Ax_n, & \text{если } x \notin L \\ Ax, & \text{иначе} \end{cases}$$

Очевидно, что $\widetilde{A}|_L=A$, значит $\widetilde{A}-$ продолжение A.

Возникает вопрос о корректности определения \widetilde{A} . Рассмотрим другую последовательность $\{x_n'\}\subset L$ такую, что $\lim_{n\to\infty}x_n'=x$.

Очевидно, что $(x'_n - x_n) \xrightarrow[n \to \infty]{} 0$. Тогда:

$$||A(x'_n - x_n)|| = ||Ax'_n - Ax_n|| \le ||A|| \cdot ||x'_n - x_n|| \xrightarrow[n \to \infty]{} 0$$

Последовательность $\{Ax_n\}$ фундаментальна, т.к.

$$||Ax_n - Ax_m|| = ||A(x_n - x_m)|| \le ||A|| \cdot ||x_n - x_m|| \xrightarrow[n \text{ m} \to \infty]{} 0$$

Пространство Y является банаховым, значит определены пределы фундаментальных последовательностей: $y = \lim_{n \to \infty} Ax_n$ и $y' = \lim_{n \to \infty} Ax'_n$ Покажем, что y' = y:

$$Ax'_n - y = (Ax'_n - Ax_n) + (Ax_n - y) \xrightarrow{n \to \infty} 0$$

Значит $y = \lim_{n \to \infty} Ax'_n = y'$ и предел не зависит от выбора последовательности x_n . Линейность \widetilde{A} очевидна — в силу свойства линейности предела. Докажем равенство норм A и \widetilde{A} .

$$\begin{split} \|\widetilde{A}x\| &= \|\lim_{n\to\infty} \widetilde{A}x_n\| = (\text{норма} - \text{непрерывная функция}) = \lim_{n\to\infty} \|\widetilde{A}x_n\| = \\ &= \lim_{n\to\infty} \|Ax_n\| \leqslant \|A\| \lim_{n\to\infty} \|x_n\| = \|A\| \cdot \|x\| \Rightarrow \|\widetilde{A}\| \leqslant \|A\| \\ \|A\| &= \sup_{\substack{x\in L\\ \|x\|=1}} \|Ax\| = \sup_{\substack{x\in L\\ \|x\|=1}} \|\widetilde{A}x\| \leqslant \sup_{\substack{x\in X\\ \|x\|=1}} \|\widetilde{A}x\| = \|\widetilde{A}\| \end{split}$$

В итоге: $\|A\| = \|\widetilde{A}\|$. Отсюда следует ограниченность \widetilde{A} .

Опр 1.22. Через $\mathcal{L}(X,Y)$ обозначим пространство линейных ограниченных операторов, действующих из X в Y.

Теорема 1.7. Если Y — банахово, то $\mathcal{L}(X,Y)$ является банаховым пространством с нормой ||A||.

Доказательство. (В курсе лекций не приводилось)

Докажем, что $\mathcal{L}(X,Y)$ — линейное нормированное пространство.

$$(A+B)x = Ax + Bx;$$
 $(\lambda A)x = \lambda (Ax)$

- 1. A+B и λA ограничены
- 2. Выполняются аксиомы линейного пространства
- 3. Выполняются аксиомы нормы (из свойств ||A||)

Осталось показать полноту $\mathcal{L}(X,Y)$. Пусть $\{A_n\} \subset \mathcal{L}(X,Y)$ — фундаментальная по операторной норме последовательность. Нужно показать, что $\exists A \in \mathcal{L}(X,Y)$ такой, что $\|A_n - A\| \xrightarrow[n \to \infty]{} 0$.

Пусть $x \in X$ — произвольный элемент.

Рассмотрим $\{A_n x\}$. Покажем, что эта последовательность фундаментальна:

$$||A_n x - A_m x|| = ||(A_n - A_m)x|| \le ||A_n - A_m|| \cdot ||x|| \xrightarrow[n \to \infty]{} 0$$

Обозначим $y_n = A_n x$. Таким образом, $\{y_n\}$ фундаментальна в Y. Пространство Y банахово, следовательно, $\exists ! y \in Y$ такой, что $y = \lim_{n \to \infty} y_n$

Определим оператор A по следующему правилу:

$$Ax = \lim_{n \to \infty} A_n x = y$$

Т.е. каждому $x \in X$ соответствует $y \in Y$. Оператор A линеен в силу свойств линейности предела и линейности операторов A_n .

Докажем ограниченность A:

Рассмотрим числовую последовательность $\{||A_n||\}$. Имеем:

$$||A_n|| = ||A_n - A_m + A_m|| \le ||A_n - A_m|| + ||A_m|| \Rightarrow ||A_n - A_m|| \xrightarrow[n,m\to\infty]{} 0 \Rightarrow |||A_n|| - ||A_m||| \xrightarrow[n,m\to\infty]{} 0$$

Получаем, что $\{\|A_n\|\}$ фундаментальна $\Rightarrow \{\|A_n\|\}$ ограничена, т.е. $\exists M$ такое, что $\forall n: ||A_n|| \leq M$ Имеем:

$$\|Ax\| = \|\lim_{n \to \infty} A_n x\| = ($$
в силу непрерывности нормы $) = \lim_{n \to \infty} \|A_n x\| \leqslant \lim_{n \to \infty} \|A_n\| \cdot \|x\| \leqslant M \|x\| \Rightarrow A$ - ограничен

Осталось показать сходимость в операторной норме:

$$||A_n - A|| = \sup_{\|x\| \le 1} ||(A_n - A)x|| = \sup_{\|x\| \le 1} ||A_n x - Ax||$$

Т.к. $\{A_n x\}$ фундаментальна, то:

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \ | \ \forall n > n_0, \ \forall p > 0 : \|A_{n+p}x - A_nx\| < \varepsilon$$

Перейдём к пределу $p \to \infty$:

$$\|Ax-A_nx\|\leqslant arepsilon$$
 для произвольного элемента $x\Rightarrow\sup_{\|x\|\leqslant 1}\|Ax-A_nx\|\leqslant arepsilon$

Тогда:

$$\|A_n-A\| \xrightarrow[n \to \infty]{} 0 \Rightarrow A_n \xrightarrow[n \to \infty]{} A$$
 в операторной норме

Следовательно, $\mathcal{L}(X,Y)$ - полное. В итоге получаем, что $\mathcal{L}(X,Y)$ - банахово.

Пемма 1.2. Пусть X, Y — нормированные пространства, и пусть заданы

операторы $A, A_n \in \mathcal{L}(X,Y)$.

Тогда, если $\|A - A_n\| \xrightarrow[n \to \infty]{} 0$, то $A_n x \xrightarrow[n \to \infty]{} Ax$ равномерно на любом шаре $\overline{B_R}(0)$.

Доказательство. Имеем:

$$||A - A_n|| \xrightarrow[n \to \infty]{} 0 \Rightarrow \forall \varepsilon > 0 \,\exists n_0 \,|\, \forall n \geqslant n_0 : ||A_n - A|| < \frac{\varepsilon}{R}$$

Тогда:

$$||A_n x - Ax|| \leqslant ||A_n - A|| \cdot ||x|| < \frac{\varepsilon}{R} ||x|| \leqslant$$
$$\leqslant (||x|| \leqslant R \text{ B mape } \overline{B_R}(0)) \leqslant \varepsilon$$

Замечание 1.8. Сходимость по норме \equiv равномерная сходимость.

Опр 1.23. Пусть $A_n \in \mathcal{L}(X,Y) \ \forall n$. Последовательность A_n сходится к линейному оператору A поточечно, если $\forall x \in X : A_n x \xrightarrow{r} Ax$ в $npocmpaнcmвe\ Y.$

Замечание 1.9. Из сходимости по норме следует поточечная сходимость. Обратное неверно.

Пример 1.3. Пусть H — бесконечномерное гильбертово пространство. Пусть $\{e_n\}$ — счётный ортонормированный базис. Понятно, что $\forall x \in H$:

$$x = \sum_{i=1}^{\infty} (x, e_i)e_i$$

Обозначим через A_n операторы проектирования на $\overline{\text{span}\{e_1, \dots e_n\}}$, где span — линейная оболочка $e_1, \dots e_n$ (подпространство с таким базисом). Тогда:

$$A_n x = \sum_{i=1}^n (x, e_i) e_i$$

Очевидно, что $A_n \to I$ поточечно (I — единичный оператор), но:

$$||A_n e_{n+1} - I e_{n+1}|| = ||A_n e_{n+1} - e_{n+1}|| = ||\theta - e_{n+1}|| = ||e_{n+1}|| = 1$$

Теорема 1.8. Пусть X, Y — банаховы пространства. Тогда $\mathcal{L}(X, Y)$ — банахово относительно поточечной сходимости.

Доказательство. См. после доказательства теоремы 1.9.

Теорема 1.9 (Банаха-Штейнхауза). Пусть X — банахово пространство, и пусть задана последовательность операторов $\{A_n\}$ такая, что $\forall n: A_n \in \mathcal{L}(X,Y)$ и $\{A_n\}$ сходится поточечно. Тогда последовательность $\{\|A_n\|\}$ ограничена.

Доказательство. Предположим противное: $\{\|A_n\|\}$ неограничена.

Тогда последовательность $\{\|A_nx\|\}$ неограничена на любом замкнутом шаре $\overline{B_{\varepsilon}}(x_0), x_0 \in X$. Если это не так (т.е. $\{\|A_nx\|\}$ ограничена на некотором шаре), то

$$\exists \varepsilon > 0, x_0 \in X \mid ||A_n x|| < k \quad \forall x \in \overline{B_{\varepsilon}}(x_0).$$

Тогда для любого $y \in X$ выполняется:

$$x = \left(x_0 + \frac{\varepsilon}{\|y\|}y\right) \in \overline{B_\varepsilon}(x_0)$$

Действительно, распишем норму:

$$||x - x_0|| = ||x_0 + \frac{\varepsilon}{||y||}y - x_0|| = ||\frac{\varepsilon}{||y||}y|| = \varepsilon \frac{||y||}{||y||} = \varepsilon$$

Оценим:

$$||A_n y|| = \frac{||y||}{\varepsilon} ||A_n x - A_n x_0|| < \frac{||y||}{\varepsilon} (||A_n x_0|| + k)$$

Т.к. x_0 — фиксированный элемент и $\{A_n x_0\}$ сходится по условию, то $\exists C$ — const $| \|A_n y\| \le C \|y\|$, что противоречит предположению об неограниченности последовательности $\{\|A_n\|\}$.

Таким образом, $\{A_nx\}$ должна быть неограничена на любом шаре. Пусть $x_0 \in X$, $\varepsilon_0 > 0 \mid \{A_nx\}$ неограничена в $\overline{B_{\varepsilon_0}}(x_0)$.

• Из неограниченности следует, что $\exists n_1 \in \mathbb{N}, x_1 \in \overline{B_{\varepsilon_0}}(x_0)$ такие, что выполняется: $||A_{n_1}x_1|| > 1$.

• Из непрерывности оператора A_{n_1} следует, что $\exists \varepsilon_1 > 0$ такое, что $\overline{B_{\varepsilon_1}}(x_1) \subset \overline{B_{\varepsilon_0}}(x_0)$ и при этом

$$\forall x \in \overline{B_{\varepsilon_1}}(x_1): \ \|A_{n_1}x\| > \frac{1}{2}$$

Далее, $\exists n_2 \in \mathbb{N}, x_2 \in \overline{B_{\varepsilon_1}}(x_1), \varepsilon_2 > 0$ такие, что:

$$||A_{n_2}x_2|| > 2;$$

$$\overline{B_{\varepsilon_2}}(x_2) \subset \overline{B_{\varepsilon_1}}(x_1);$$

$$\forall x \in \overline{B_{\varepsilon_2}}(x_2) : ||A_{n_2}x|| > \frac{2}{2} = 1.$$

Продолжая по аналогии получаем:

$$\ldots \subset \overline{B_{\varepsilon_k}}(x_k) \subset \overline{B_{\varepsilon_{k-1}}}(x_{k-1}) \subset \ldots$$

При этом $\lim_{k \to \infty} \varepsilon_k = 0$ и

$$\|A_{n_k}x_k\| > k;$$

$$\forall x \in \overline{B_{\varepsilon_k}}(x_k): \|A_{n_k}x\| > \frac{k}{2} \quad \left(\begin{array}{c} \text{в силу неограниченности} \\ \text{на любом шаре.} \end{array} \right)$$

По теореме 1.2 $\exists ! \widetilde{x} \mid \forall k : \widetilde{x} \in \overline{B_{\varepsilon_k}}(x_k)$. Имеем:

$$\|\widetilde{x} - x_k\| < \varepsilon_k, \quad \text{ t.k. } \widetilde{x}, x_k \in \overline{B_{\varepsilon_k}}(x_k)$$

Т.к. $\varepsilon_k \xrightarrow[k\to\infty]{} 0$, то получаем, что $\widetilde{x}=\lim_{k\to\infty} x_k$. При этом $\widetilde{x}\in \overline{B_{\varepsilon_k}}(x_k)$, т.е. $\|A_{n_k}\widetilde{x}\|>\frac{k}{2}$. Это противоречит условию поточечной сходимости последовательности $\{A_n\}$.

Замечание 1.10. В теореме 1.9 вместо требования поточечной сходимости можно требовать ограниченность последовательности $\{\|A_n x\|\} \ \forall x \in X$.

Доказательство теоремы 1.8. A_n — последовательность поточечно сходящихся операторов из $\mathcal{L}(X,Y)$.

Положим $Ax=\lim_{n\to\infty}A_nx$. Достаточно показать, что A-линеен и ограничен.

- ightharpoonup Линейность очевидна (из свойств A_n и свойств \lim)
- ⊳ Ограниченность следует из теоремы 1.9

Теорема 1.10. Пусть X,Y — банаховы пространства. $A_n,A\in\mathcal{L}(X,Y)$. Тогда $A_n\xrightarrow[n\to\infty]{}A$ поточечно \Leftrightarrow

- 1. Последовательность $\{||A_n||\}$ ограничена;
- 2. $A_n \to A$ поточечно на линейном многообразии всюду плотном в X при $n \to \infty$.

Доказательство. (В курсе лекций не приводилось) (\Rightarrow)

- 1) Следует из теоремы 1.9.
- 2) Очевидно. В качестве линейного многообразия взять само X.
- (\Leftarrow) Пусть $M=\sup_{n\in\mathbb{N}\cup\{0\}}\|A_n\|$, где $A_0=A$. Обозначим через L линейное многообразие из пункта 2 теоремы.

Пусть $x' \in X \setminus L$ и выберем $\varepsilon > 0$. L всюду плотно в X, следовательно:

$$\exists x \in L \, \big| \, \|x' - x\| < \frac{\varepsilon}{4M}$$

Имеем:

$$||A_{n}x' - Ax'|| \le ||A_{n}x' - A_{n}x|| + ||A_{n}x - Ax|| + ||Ax - Ax'|| \le \le ||A_{n}x - Ax|| + (||A_{n}|| + ||A||) ||x' - x|| < < ||A_{n}x - Ax|| + (M + M) \frac{\varepsilon}{4M} = ||A_{n}x - Ax|| + \frac{\varepsilon}{2}$$

По условию: $\forall x \in L : A_n x_n \xrightarrow[n \to \infty]{} Ax \Rightarrow$

$$\exists n_0 \mid \forall n \geqslant n_0 : ||A_n x - A x|| < \frac{\varepsilon}{2}$$

Отсюда для $\forall n \geqslant n_0$:

$$||A_n x' - Ax'|| < ||A_n x - Ax|| + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Таким образом, показали поточечную сходимость $A_n \to A$ на $X \setminus L$. В итоге, получаем, что $A_n \to A$ поточечно на всём X.

(Лекция №3, 20.09.2010)

2 Обратные операторы

3амечание 2.1. По умолчанию будем считать, что X — банахово пространство, а операторы — линейные (иные случаи будут оговариваться специально).

Пусть X, Y—линейные пространства.

 $A: X \to Y$ — линейный оператор.

Опр 2.1. Оператор B_1 такой, что выполняется $B_1Ax = x \ \forall x \in X$ называется левым обратным. Заметим, что $B_1: Y \to X$.

Оператор B_2 такой, что выполняется $AB_2y = y \ \forall y \in Y$ называется правым обратным. Заметим, что $B_2: Y \to X$.

Eсли $B=B_1=B_2$, то B называется обратным, а оператор A обратимым. Будем обозначать $B=A^{-1}$.

Утв 2.1. Пусть A — линейный оператор, $B = A^{-1}$. Тогда B — линеен.

Упр 2.1. Доказать утв. 2.1 (см. стр. 90)

Утв 2.2. Если $A: X \xrightarrow{\operatorname{Ha}} Y, A$ — взаимно однозначный оператор, то A обратим.

Упр 2.2. Доказать утв. 2.2 (см. стр. 90)

Теорема 2.1. Пусть A — линейный оператор: $X \xrightarrow{\text{Ha}} Y$, где X, Y — нормированные пространства, и $\forall x \in X$:

$$||Ax|| \ge m||x||$$
, где $m > 0$ — фиксированное число

Тогда A обратим, и $A^{-1} \in \mathcal{L}(X,Y)$.

Доказательство. (В курсе лекций не приводилось)

Пусть $Ax_1 = y$ и $Ax_2 = y$. Тогда $A(x_1 - x_2) = 0$. Имеем:

$$m||x_1 - x_2|| \le ||A(x_1 - x_2)|| = 0 \implies x_1 = x_2$$

Тогда получаем, что A— взаимно однозначный, следовательно, по утверждению 2.2 оператор A обратим.

Оператор A линеен \Rightarrow (по утверждению 2.1) A^{-1} также является линейным. Покажем ограниченность:

$$||A^{-1}y|| \le \frac{1}{m} ||AA^{-1}y|| = \frac{1}{m} ||y|| \quad \forall y \in Y.$$

Утв 2.3. Для любых L и $M \in \mathcal{L}(X, X)$ верно:

$$||LM|| \leqslant ||L|| \cdot ||M||$$

Доказательство. Имеем:

$$||LMx|| \le ||L|| \cdot ||Mx|| \le ||L|| \cdot ||M|| \cdot ||x|| \quad \forall x \in X$$

Отсюда следует требуемое.

Теорема 2.2. Пусть $A \in \mathcal{L}(X)$, где X — банахово пространство, причём $\|A\| < 1$.

Тогда существуют $(I+A)^{-1},\,(I-A)^{-1}\in\mathcal{L}(X),\,$ где I-единичный оператор.

Обозначение: $\mathcal{L}(X) = \mathcal{L}(X, X)$.

Доказательство. (В курсе лекций не приводилось)

Рассмотрим формальный операторный ряд:

$$I - A + A^2 - A^3 + \dots + (-1)^n A^n + \dots = \sum_{n=0}^{\infty} (-1)^n A^n$$

Сходимость любого ряда — это сходимость частичных сумм. Рассмотрим частичную сумму:

$$S_n = \sum_{k=0}^{n} (-1)^k A^k$$

Это уже корректное понятие, ограниченный линейный оператор. Покажем, что $\{S_n\}$ — фундаментальная в операторной норме:

$$||S_{n+p} - S_n|| = ||(-1)^{n+p}A^{n+p} + \dots + (-1)^{n+1}A^{n+1}|| \le ||A^{n+p}|| + \dots + ||A^{n+1}||$$

По утверждению 2.3: $||A^n|| \leq ||A||^n$.

По условию, ||A|| < 1, тогда $\exists q \in \mathbb{R} \mid ||A|| \leqslant q < 1$. Получаем:

$$||S_{n+p} - S_n|| \leqslant q^{n+p} + \ldots + q^{n+1} = q^{n+1} (1 + q + \ldots + q^{p-1}) \leqslant$$

 $\leqslant q^{n+1} \underbrace{(1 + q + \ldots + q^{p-1} + q^p + \ldots)}_{\text{сумма геом. прогрессии}} = q^{n+1} \frac{1}{1 - q}$

Т.к. $q < 1 \Rightarrow q^{n+1} \xrightarrow[n \to \infty]{} 0 \Rightarrow \|S_{n+p} - S_n\|$ можем сделать сколь угодно малой $\Rightarrow \{S_n\}$ фундаментальна в операторной норме.

 $\mathcal{L}(X,X)$ — банахово \Rightarrow т.к. $\{S_n\}$ фундаментальна, то $\{S_n\}$ сходится \Rightarrow ряд сходится (в силу сходимости частичных сумм):

$$\lim_{n \to \infty} S_n = S \in \mathcal{L}(X, X)$$

Рассмотрим:

$$S(I+A) = \left[\lim_{n \to \infty} S_n\right](I+A) = \left[\lim_{n \to \infty} S_n(I+A)\right] = \left[\lim_{n \to \infty} I - A^{n+1}\right] = I,$$

т.к. $\lim_{n \to \infty} A^{n+1} = 0$, ибо $||A^n|| \le ||A||^n \le q^n$.

Аналогично: (I+A)S=I.

Оператор A линеен $\Rightarrow (I + A)$ линеен $\Rightarrow S$ линеен.

Ограниченность:

$$||S|| \le \sum_{n=0}^{\infty} ||A||^n \le \sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$$

Таким образом, $(I+A)^{-1} \in \mathcal{L}(X,X)$. Обратимость оператора (I-A) показывается аналогично.

Теорема 2.3. Пусть $A \in \mathcal{L}(X)$ и пусть $\exists A^{-1}$. Пусть B — линейный оператор такой, что выполняется

$$||BA|| < ||A^{-1}||^{-1}$$

Тогда оператор (A + BA) обратим.

Доказательство. Имеет место:

$$A + BA = A(I + A^{-1}BA)$$

Тогда по утверждению 2.3:

$$\|A^{-1}BA\| \leqslant \|A^{-1}\| \cdot \|BA\| < 1$$

По теореме 2.2 получаем, что оператор $I+A^{-1}BA$ обратим. Следовательно, оператор A+BA обратим, как суперпозиция обратимых операторов.

Замечание 2.2. Суть теоремы в том, что малое возмущение не выводит за границы класса обратимости. Значит, подмножество обратимых операторов в $\mathcal{L}(X)$ — открыто (т.к. можем взять $B = \lambda A$).

Теорема 2.4 (Банаха об обратном отображении). Пусть X, Y — банаховы пространства, $A: X \xrightarrow[1-1]{\operatorname{Ha}} Y$ — линейный ограниченный оператор. Тогда существует $A^{-1} \in \mathcal{L}(Y, X)$.

Доказательство. Существование обратного очевидно из определения взаимно-однозначного оператора (надо помнить, что R(A) = Y, т.е. A — сюръективен). Линейность также очевидна. Таким образом, осталось показать, что обратный оператор будет ограниченным.

Имеем: $A^{-1}: Y \to X$ — линейный. По лемме 1.1 получаем:

$$Y = \bigcup_{k=1}^{\infty} Y_k$$
, где $Y_k = \{ y \in Y \mid ||A^{-1}y||_X \leqslant k ||y||_Y \}$

и при этом хотя бы одно Y_k всюду плотно в Y. Выберем Y_n такое, что Y_n всюду плотно в Y.

Выберем $y \in Y, y \neq \theta$ и обозначим q = ||y||.

Рассмотрим $B_q(0)$ и $S_q(0)$.

Выберем $\{y_m\} \subset B_q(0)$ такую, что $y_m \xrightarrow[m \to \infty]{} y$. Такая последовательность существует, т.к. $B_q(0) \cup S_q(0) = \overline{B}_q(0)$ — замкнутое множество $\Rightarrow \exists m_0 \mid \|y - y_{m_0}\| \leqslant \frac{q}{4}$

 Y_n всюду плотно в $Y\Rightarrow\exists y_{m_0}^*\in Y_n$ такой, что

$$||y_{m_0}^* - y_{m_0}|| \leqslant \frac{q - ||y_{m_0}||}{4}$$

Т.е. к любому $y \in Y$ можем с наперёд заданной точностью приблизиться элементами из Y_n .

Имеем:

$$||y - y_{m_0}^*|| = ||y + y_{m_0} - y_{m_0} - y_{m_0}^*|| \le ||y - y_{m_0}|| + ||y_{m_0} - y_{m_0}^*|| \le \frac{q}{4} + \frac{q}{4} - \frac{||y_{m_0}||}{4} \le \frac{q}{2}$$

Оценим:

$$||y_{m_0}^*|| = ||y_{m_0}^* + y_{m_0} - y_{m_0}|| \leqslant ||y_{m_0}^* - y_{m_0}|| + ||y_{m_0}|| \leqslant$$

$$\leqslant \frac{q - ||y_{m_0}||}{4} + ||y_{m_0}|| = \frac{q}{4} + 3\frac{||y_{m_0}||}{4} \leqslant q \quad (\text{t.k. } y_{m_0} \in B_q(0))$$

Обозначим $z_1 = y_{m_0}^* \in Y_n$. Имеем:

$$||y - z_1|| \leqslant \frac{q}{2}; \quad ||z_1|| \leqslant q$$

T.е. получаем, что $z_1 \in Y_n \cap \overline{B_q}(0)$.

Повторяем предыдущие рассуждения (в качестве y берём $y-z_1$). Тогда:

$$||y - z_1 - z_2|| \leqslant \frac{q}{4}; \quad ||z_2|| \leqslant \frac{q}{2}$$

и так далее. В итоге получаем последовательность $\{z_k\}$ такую, что $\forall m$:

$$||y - (z_1 + z_2 + \dots + z_m)|| \le \frac{q}{2^m} (\star)$$

$$||z_m|| \le \frac{q}{2^{m-1}}$$

$$z_m \in Y_n \cap \overline{B_{\frac{q}{2^{m-1}}}}(0)$$

Положим: $x_m=A^{-1}z_m$ (запись корректна, т.к. обратный оператор существует). Из (*) следует, что: $y=\lim_{k\to\infty}\sum_{i=1}^k z_i$. Поскольку $z_m\in Y_n$, то:

$$||x_m|| \leqslant n||z_m|| \leqslant \frac{nq}{2^{m-1}} (\star \star)$$

Обозначим: $s_k = \sum_{i=1}^k x_i$. Последовательность $\{s_k\}$ является фундаментальной:

$$||s_k - s_{k+p}|| = \left\| \sum_{i=k+1}^{k+p} x_i \right\| \leqslant \sum_{i=k+1}^{k+p} ||x_i|| \leqslant \sum_{i=k+1}^{k+p} \frac{nq}{2^{i-1}}$$

Известно, что ряд $\sum_{i=1}^{\infty} \frac{1}{2^{i-1}}$ сходится, следовательно, по критерию Ко-

ши получаем, что величина $\sum_{i=k+1}^{k+p} \frac{1}{2^{i-1}}$ может быть сделана сколь угодно

малой. Таким образом, последовательность $\{s_k\}$ действительно является фундаментальной. Следовательно, она сходится, т.к. пространство X является банаховым.

Тогда по критерию Коши получаем, что ряд $\sum_{i=1}^{\infty} x_i - \text{сходится.}$ Обозначим:

$$x = \sum_{i=1}^{\infty} x_i = \lim_{k \to \infty} s_k$$

Имеем

$$Ax = A\left(\lim_{k \to \infty} s_k\right) = A\lim_{k \to \infty} \sum_{i=1}^k x_i = \left(\begin{array}{c} A - \text{непрерывен} \Rightarrow \\ \Rightarrow A\lim = \lim A \end{array}\right) =$$

$$= \lim_{k \to \infty} A\left(\sum_{i=1}^k x_i\right) = (A - \text{линеен}) = \lim_{k \to \infty} \sum_{i=1}^k Ax_i = \lim_{k \to \infty} \sum_{i=1}^k z_i = y$$

Таким образом, построен элемент x, который является прообразом y.

$$||A^{-1}y|| = ||x|| = ||\lim_{k \to \infty} \sum_{i=1}^k x_i||$$

Очевидно, что $\|\cdot\|$ — непрерывная функция. Тогда $\|\lim\| = \lim\|\cdot\|$ Отсюда получаем:

$$||A^{-1}y|| = \lim_{k \to \infty} \left\| \sum_{i=1}^{k} x_i \right\| \le \lim_{k \to \infty} \sum_{i=1}^{k} ||x_i|| \le$$

$$\le (\text{по } (\star \star)) \le nq \lim_{k \to \infty} \sum_{i=1}^{k} \frac{1}{2^{i-1}} = 2nq = 2n||y||$$

$$\text{предел} = 2$$

В итоге получаем:

$$||A^{-1}y|| \leqslant K||y|| \quad \forall y \in Y \implies A^{-1}$$
 — ограничен

3 Функционалы в нормированных пространствах

Опр 3.1. Функционалом называется отображение $f: X \to \mathbb{R}(\mathbb{C})$.

По умолчанию работаем над полем \mathbb{R} .

 $\Pi pumep \ 3.1. \ \|\cdot\| - функционал (нелинейный).$

Опр 3.2. Цепь — подмножество, любые два элемента которого сравнимы.

Bерхняя граница цепи— элемент, больший или равный любого элемента цепи.

Элемент а называется максимальным, если $\nexists b \mid a \leqslant b$.

Лемма 3.1 (Цорна). Пусть Z — частично-упорядоченное множество, в котором всякая цепь имеет верхнюю границу. Тогда в Z существует максимальный элемент и $\forall a \in Z : \exists b \geqslant a \mid b$ — максимальный в Z.

Теорема 3.1 (**Хана-Банаха**). Пусть X — нормированное пространство. L — линейное многообразие из X; f — линейный ограниченный функционал, заданный на L:

$$|f(x)| \leqslant \underbrace{\|f\|_L}_K \cdot \|x\| \quad \forall x \in L$$

Тогда f можно продолжить на всё пространство X, причём с сохранением нормы, т.е.

$$\exists F \mid F(x)|_L = f(x); \qquad ||F|| = ||f||_L$$

____(Лекция №4, 27.09.2010)

Доказательство. Зафиксируем $x_0 \in X \setminus L$.

Построим новое, более широкое многообразие:

$$L_1 = \{ y \in X \mid \exists x \in L, \ \exists t \in \mathbb{R}, \ y = x + tx_0 \}$$

Предположим, что у имеет два представления:

$$y = x_1 + t_1 x_0 y = x_2 + t_2 x_0$$
 $\Rightarrow x_1 - x_2 = (t_2 - t_1) x_0$

Если $t_1=t_2$, то $x_1=x_2$, и, следовательно, представление y единственно. Если же $t_1\neq t_2$, то:

$$x_0 = \underbrace{\frac{x_1}{t_2 - t_1}}_{\in L} - \underbrace{\frac{x_2}{t_2 - t_1}}_{\in L} \Rightarrow x_0 \in L,$$

что противоречит выбору x_0 , следовательно, представление y единственно.

Пусть $x', x'' \in L$. Рассмотрим:

$$f(x') - f(x'') = \begin{pmatrix} \text{поскольку } f - \\ \text{линейный функционал} \end{pmatrix} = f(x' - x'') \leqslant$$

$$\leqslant |f(x' - x'')| \leqslant (\text{т.к. } |f(x)| \leqslant ||f|| \cdot ||x||) \leqslant$$

$$\leqslant ||f|| \cdot ||x' - x''|| \leqslant ||f|| \cdot (||x' + x_0|| + ||x'' + x_0||)$$

Получаем:

$$f(x') - \|f\| \cdot \|x' + x_0\| \leqslant f(x'') + \|f\| \cdot \|x'' + x_0\|; \Rightarrow$$
 \Rightarrow (т.к. x' , x'' – произвольные элементы из L) \Rightarrow
$$\sup_{x \in L} (f(x) - \|f\| \cdot \|x + x_0\|) \leqslant \inf_{x \in L} (f(x) + \|f\| \cdot \|x + x_0\|)$$

Последнее неравенство — это неравенство для двух действительных чисел. Тогда $\exists c \in \mathbb{R}$ такое, что

$$\sup_{x \in L} (f(x) - \|f\| \cdot \|x + x_0\|) \leqslant c \leqslant \inf_{x \in L} (f(x) + \|f\| \cdot \|x + x_0\|)$$
 (2)

Рассмотрим произвольный $y \in L_1$. По доказанному выше: $y = x + tx_0$, где x,t определены однозначно. Определим новый функционал $\varphi(y)$ для элемента $y = x + tx_0$:

$$\varphi(y) = f(x) - tc$$

Это и есть продолжение — очевидно, что f и φ совпадают на L. Линейность φ очевидна. Необходимо доказать ограниченность φ и выполнение $\|\varphi\| = \|f\|$.

Рассмотрим такие y, для которых t > 0.

$$\varphi(y) = t \left(f \left(\frac{x}{t} \right) - c \right)$$

Согласно левой части неравенства (2) получаем:

$$f(x) - ||f|| \cdot ||x + x_0|| \le c; \implies f\left(\frac{x}{t}\right) - c \le ||f|| \cdot \left\|\frac{x}{t} + x_0\right\|$$

Следовательно

$$\varphi(y) \leqslant t \|f\| \cdot \left\| \frac{x}{t} + x_0 \right\| = \|f\| \cdot \|y\|$$
$$\varphi(x + tx_0) \leqslant \|f\| \cdot \|y\|$$

Рассмотрим теперь такие y, для которых t < 0. Согласно правой части неравенства (2) получаем:

$$f\left(\frac{x}{t}\right) - c \geqslant -\|f\| \cdot \left\|\frac{x}{t} + x_0\right\| = -\|f\| \cdot \left\|\frac{1}{t}(x + tx_0)\right\| =$$

$$= -\frac{1}{|t|}\|f\| \cdot \|x + tx_0\| = \frac{1}{t}\|f\| \cdot \|x + tx_0\| = \frac{1}{t}\|f\| \cdot \|y\|$$

Следовательно

$$\varphi(y) = \varphi(x + tx_0) = f(x) - tc = t\left(f\left(\frac{x}{t}\right) - c\right) \leqslant_{(t<0)} ||f|| \cdot ||y||$$

Заменим y на -y. Аналогичными рассуждениями для t>0 и t<0 получаем:

$$\varphi(-y) = -\varphi(y) = -t\left(f\left(\frac{x}{t}\right) - c\right) \leqslant ||f|| \cdot ||y||$$

Отсюда

$$|\varphi(y)| \leq ||f|| \cdot ||y|| \Rightarrow ||\varphi||_{L_1} \leq ||f||_L$$

Т.е. ограниченность функционала доказана.

Многообразие L_1 шире многообразия L, следовательно, очевидно, что $\|\varphi\|_{L_1} \geqslant \|f\|_L$. В итоге:

$$\|\varphi\|_{L_1} = \|f\|_L$$

Таких продолжений может оказаться сколь угодно много. Пусть Φ — это совокупность всех продолжений, сохраняющих норму. На нём можно ввести частичный порядок по правилу:

$$\varphi' \prec \varphi''$$
, если $L' \subset L''$ и $\varphi''|_{L'} = \varphi'$

Пусть $\{\varphi_{\alpha}\}_{{\alpha}\in A}$ — произвольное линейно-упорядоченное семейство в Φ , (A— множество индексов). Любые два φ_{α} связаны отношением предшествования. Определим:

$$L^* = \bigcup_{lpha \in A} L_lpha$$
, где L_lpha — многообразие, область определения $arphi_lpha$

Определим $\varphi^*(y) = \varphi_{\alpha_0}(y)$ (т.к. $y \in L^* \Rightarrow \exists \alpha_0 \mid y \in L_{\alpha_0}$). Определение корректно, т.к. $\{\varphi_{\alpha}\}$ упорядочено.

 φ^* является продолжением каждого φ_α с многообразия L_α на L^* . То есть φ^* является верхней гранью, при этом

$$\|\varphi^*\|_{L^*} = \|f\|$$

По лемме Цорна (лемма 3.1) в Φ существует максимальный элемент F, т.е. элемент — продолжение f на многообразие L_0 . Дальнейшего продолжение не существует (иначе возникает противоречие с максимальностью F), следовательно, $L_0 = X$. По лемме $F \in \Phi$, т.е. F сохраняет норму.

 $3 a me \ vanue \ 3.1. \ {
m Ecл}\ u \ X$ сепарабельно, то доказательство теоремы можно провести без леммы Цорна.

Следствие 3.1. Пусть X — нормированное пространство, $x_0 \neq \theta$. Тогда существует F(x) такой, что

1)
$$||F|| = 1;$$
 2) $F(x_0) = ||x_0||$

Доказательство. Рассмотрим прямую, проходящую через точку x_0

$$L = \{x \mid x = tx_0\}$$

Определим $f(x) = t||x_0||$. Очевидно, что f является линейным и ограниченным. Более того, из определения f следует, что $f(x_0) = ||x_0||$. Имеем:

$$|f(x)| = |t| \cdot ||x_0|| = ||x|| \implies ||f|| = 1$$

По теореме 3.1 $\exists F \mid ||F|| = ||f|| = 1$, $F(x_0) = f(x_0) = ||x_0|| = |f(x_0)| = ||F(x_0)||$, и при этом F определён на всём X.

Следствие 3.2. Пусть X — нормированное пространство; $L \subset X$ — линейное многообразие. Пусть $x_0 \in X \setminus L$ и $\rho(x_0, L) = \inf_{x \in L} \rho(x_0, x) = d > 0$. Тогда $\exists F \mid F$ строго разделяет L и x_0 :

- 1. $F(x) = 0 \ \forall x \in L$
- 2. $||F|| = \frac{1}{d}$
- 3. $F(x_0) = 1$

Доказательство. Рассмотрим

$$L_1 = \{ y \in X \mid \exists x \in L \ \exists t \in \mathbb{R}, \ y = x + tx_0 \},$$

и определим f по правилу: f(y) = t. Видно, что $\forall y \in L : f(y) = 0$. Вычислим:

$$|f(y)| = |t| = \frac{|t| \cdot \|y\|}{\|y\|} = \frac{|t| \cdot \|y\|}{\|x + tx_0\|} = \frac{\|y\|}{\frac{1}{|t|}\|x + tx_0\|} = \frac{\|y\|}{\|x_0 - \left(-\frac{x}{t}\right)\|} \leqslant \frac{\|y\|}{d},$$
 т.к. $\|x_0 - \left(-\frac{x}{t}\right)\| \geqslant d$, как расстояние от точки из L до x_0

Таким образом, получаем:

$$||f|| \leqslant \frac{1}{d} \quad (\star)$$

Из свойств точной нижней грани $(\rho(x_0,L)=d)$ следует, что $\exists \{x_n\} \subset L \mid \lim_{n\to\infty} \|x_n-x_0\|=d.$ Рассмотрим:

$$f(x_n - x_0) \le |f(x_n - x_0)| \le ||f|| \cdot ||x_n - x_0||$$

С другой стороны:

$$|f(x_n - x_0)| = |f(x_n) - f(x_0)| = |0 - 1| = 1$$

Таким образом

$$1 \le ||f||_{L_1} \cdot ||x_n - x_0|| \implies ||f|| \ge \frac{1}{||x_n - x_0||}$$

Переходя к пределу, получим:

$$||f|| \geqslant \frac{1}{d} \quad (\star\star)$$

Из (⋆) и (⋆⋆) следует, что

$$||f|| = \frac{1}{d}$$

По теореме $3.1 \; \exists F \; \text{такой, что}$

$$||F|| = \frac{1}{d}; \quad F(x) = f(x) \,\forall x \in L; \quad F(x_0) = f(x_0) = 1.$$

3.1 Сопряжённые операторы

Пусть X — нормированное пространство.

Опр 3.3. $X^* = \mathcal{L}(X,\mathbb{R})$ называется сопряженным пространством.

Замечание 3.2. Пространство \mathbb{R} является банаховым, следовательно, X^* также является банаховым (по теореме 1.7).

Опр 3.4. Пусть $A \in \mathcal{L}(X,Y)$. Пусть $\varphi(y) \in Y^*$. Определим функционал f по следующему правилу: $f(x) = \varphi(Ax)$. T.e.

$$\varphi \in Y^* \longrightarrow f \in X^*$$

Это отображение: $A^*: Y^* \to X^*$ называется сопряжённым оператором. Очевидно, что он линеен.

Теорема 3.2. Пусть $A \in \mathcal{L}(X,Y)$. Тогда $A^* \in \mathcal{L}(Y^*,X^*)$, причём

$$||A||_{\mathcal{L}(X,Y)} = ||A^*||_{\mathcal{L}(X^*,Y^*)}$$

Доказательство. Очевидно, что A^* — линейный оператор. Необходимо доказать, что $\|A^*\| = \|A\|$.

Пусть $x \in X$. Имеем:

$$||(A^*\varphi)(x)|| = ||f(x)|| = ||f(x)|| = ||\varphi(Ax)|| \le ||\varphi|| \cdot ||A|| \cdot ||x||$$

Следовательно

$$||A^*\varphi|| \leqslant ||A|| \cdot ||\varphi|| \Rightarrow ||A^*|| \leqslant ||A||$$

Теперь в обратную сторону. Пусть $x_0 \in X$ — фиксированный. Согласно следствию $3.1 \; \exists \varphi_0 \; \big| \; \|\varphi_0\| = 1, \; \varphi_0 \in X^* \; \text{и} \; \varphi_0(Ax_0) = \|Ax_0\|.$ Имеем:

$$||Ax_0|| = \varphi_0(Ax_0) = f(x_0) \le ||f|| \cdot ||x_0|| = ||A^*\varphi_0|| \cdot ||x_0||$$

здесь f соответствует функционалу φ_0 . Тогда:

$$||A|| \le ||A^*\varphi_0|| \le ||A^*|| \cdot ||\varphi_0|| = ||A^*||$$

Таким образом, получаем требуемое: $||A^*|| = ||A|| \implies$ ограниченность.

3.2 Функционалы и слабая сходимость

Опр 3.5. Пусть X — нормированное пространство. Последовательность $\{x_n\} \in X$ называется слабо сходящейся к элементу $x_0 \in X$, если для любого $f \in X^*$ выполняется:

$$f(x_n) \xrightarrow[n \to \infty]{} f(x_0)$$

Упр 3.1. Доказать следующие свойства: (см. стр. 90)

- 1. Слабый предел определён единственным образом.
- 2. Если последовательность $\{x_n\}$ слабо сходится κ x_0 , то любая её подпоследовательность слабо сходится κ x_0 .
- 3. Любая сильно (по норме) сходящаяся последовательность является слабо сходящейся. Обратно неверно:

В пространстве
$$l_2$$
: $(1000...0...)$ $(0100...0...)$ $(0010...0...)$

Данная последовательность сходится слабо, но не является сильно сходящейся.

4. B конечномерном пространстве: сильная \equiv слабая.

Теорема 3.3. Если $x_n \xrightarrow{\text{слаб}} x_0$, то существует последовательность линейных комбинаций $\{\sum C_{k_n} x_{k_n}\}$, сходящаяся сильно к x_0 .

Доказательство. Пусть L—совокупность всех линейных комбинаций над $\{x_n\}$. Необходимо доказать, что $x_0 \in \overline{L}$.

Будем доказывать от противного. Пусть $x_0 \notin \overline{L}$ и $\rho(x_0, \overline{L}) > 0$. Тогда по следствию $3.2 \exists f \mid f(x_0) = 1$ и $f(x) = 0 \ \forall x \in \overline{L}$.

Получаем, что $\forall k : f(x_k) = 0$, что противоречит слабой сходимости.

____(Лекция №5, 04.10.2010)

Теорема 3.4. Пусть $A \in \mathcal{L}(X,Y)$; X,Y- нормированные и пусть $\{x_n\} \xrightarrow{\text{слаб}} x_0 \in X$. Тогда $Ax_n \xrightarrow{\text{слаб}} Ax_0$.

Доказательство. Пусть $\varphi \in Y^*$. Определим $f(x) = \varphi(Ax)$.

Нетрудно убедится, что $f \in X^*$. Тогда, т.к. $\{x_n\} \xrightarrow{\mathrm{слаб}} x_0$, получаем:

$$f(x_n) \xrightarrow[n \to \infty]{} f(x_0) \Rightarrow \varphi(Ax_n) \xrightarrow[n \to \infty]{} \varphi(Ax_0)$$

Т.к. φ — произвольный, то получаем, что $Ax_n \xrightarrow{\text{слаб}} Ax_0$.

Замечание 3.3. $(X^*)^* \neq X$

Утв 3.1. Пусть $x \in X$ — произвольный фиксированный элемент. Определим

$$F_x(f) = f(x)$$
, где $f \in X^*$

Тогда $||F_x|| = ||x||$, т.е. F_x ограничен (или $F_x \in (X^*)^*$).

Доказательство. Имеем:

$$|F_x(f)| = |f(x)| \le ||f|| \cdot ||x|| \implies ||F_x|| \le ||x||$$

С другой стороны, по следствию 3.1 $\exists f_0 \in X^* \mid ||f_0|| = 1$ и $f_0(x) = |f_0(x)| = ||x||$. Т.е. получаем, что $|F_x(f_0)| = ||x||$. Отсюда:

$$||F_x|| = \sup_{\substack{f \in X^* \\ ||f|| \neq 0}} \frac{|F_x(f)|}{||f||} \ge (f = f_0) \ge \frac{|F_x(f_0)|}{||f_0||} = ||x||$$

В итоге получаем требуемое: $||F_x|| = ||x||$.

Таким образом, каждому $x \in X$ ставится в соответствие $F_x \in (X^*)^*$, причём соответствие между X и $(X^*)^*$ взаимно однозначно и изометрично $(\|F_x\| = \|x\|)$. Получаем, что $X \subset (X^*)^*$.

Возникает вопрос: а есть ли в $(X^*)^*$ другие функционалы? Т.е. такие F, что не существует $x \in X \mid F = F_x$.

Опр 3.6. Нормированное пространство X, в $(X^*)^*$ которого нет функционалов, отличных от F_x , называется рефлексивным. Т.е. $X = X^{**}$ с точностью до изоморфизма.

Пример 3.2. Рефлексивные пространства: любое гильбертово, l_p , L_p .

- $l_p^* = l_q$, где p > 1, $\frac{1}{p} + \frac{1}{q} = 1$.
- $(L_p(Q))^* = L_q(Q)$, где p > 1, $\frac{1}{p} + \frac{1}{q} = 1$.
- $C(\overline{Q})$ не является рефлексивным. Пусть $\overline{Q} = [a,b]$. Функционал $f \in C^*[a,b]$ определяется следующим образом:

$$f(x(t)) = \int_a^b x(t)dg(t)$$
 — интеграл Стильтьеса

здесь g — функция, с ограниченной вариацией (в частности, g(x) может иметь конечное число точек разрыва первого рода и, тем самым, не быть непрерывной).

Теорема 3.5. Пусть $\{x_n\} \subset X$ — слабо сходящаяся последовательность. Тогда последовательность $\{\|x_n\|\}$ является ограниченной.

Доказательство. Рассмотрим последовательность $\{F_{x_n}(f)\}$.

С одной стороны, это последовательность функционалов. С другой, $F_{x_n}(f) = f(x_n)$ — числовая последовательность.

Имеем:

 $\{x_n\}$ слабо сходится $\Rightarrow \forall f \in X^*$ числовая последовательность $\{f(x_n)\}$ сходится $\Rightarrow \{F_{x_n}(f)\}$ сходится, следовательно, по теореме 1.9 получаем, что последовательность $\{\|F_{x_n}\|\}$ ограничена.

По утверждению 3.1: $||F_{x_n}|| = ||x_n||$, отсюда получаем требуемое.

Теорема 3.6. Пусть $\{x_n\} \subset X$ слабо сходится. Тогда выполняется:

$$||x_0|| \leqslant \lim_{n \to \infty} ||x_n||$$

Доказательство. От противного. Пусть выполняется $||x_0|| > \underline{\lim}_{n \to \infty} ||x_n||$. Это неравенство двух вещественных чисел, следовательно, существует такая константа C > 0, для которой выполняется:

$$||x_0|| > C > \underline{\lim}_{n \to \infty} ||x_n|| \leftrightharpoons A$$

Из определения нижнего предела следует, что $\exists \{x_{n_k}\} \mid x_{n_k} \xrightarrow[k \to \infty]{} A$. При этом, можно считать, что

$$||x_0|| > C > ||x_{n_k}||$$
 (лишние элементы x_{n_k} выкинем)

По следствию $3.1 \exists f_0 \mid f_0(x_0) = ||x_0|| \text{ и } ||f_0|| = 1.$ Имеем:

$$|f_0(x_{n_k})| \le ||f_0|| \cdot ||x_{n_k}|| = ||x_{n_k}|| < C < ||x_0|| = f_0(x_0)$$

Т.к. $\{x_n\}$ слабо сходится, то, ввиду существования функционала f_0 , приходим к противоречию с определением слабой сходимости.

Опр 3.7. Пусть $x \in X, f \in X^*$. f и x ортогональны, если f(x) = 0.

Опр 3.8. Семейства $\{x_1 \dots x_m\} \subset X$ и $\{f_1 \dots f_n\} \subset X^*$ биортогональны, если $f_i(x_j) = \delta_i^j = \begin{cases} 1, & i = j; \\ 0, & i \neq j. \end{cases}$

Теорема 3.7. Пусть есть конечная или бесконечная система элементов $\{x_n\} \subset X$, образующая базис. И пусть $\{f_m\} \subset X^* \mid \{x_n\}$ и $\{f_m\}$ —биортогональны. Тогда любые $x \in X$ и $f \in X^*$ представимы в виде рядов Фурье:

$$x = \sum_{i=1}^{\infty} f_i(x)x_i \qquad f = \sum_{i=1}^{\infty} f(x_i)f_i$$

Для конечной аналогично.

Доказательство. Рассмотрим бесконечный случай. Любой элемент *x* можно разложить по базису:

$$x = \sum_{k=1}^{\infty} \alpha_k x_k$$

Рассмотрим

$$f_i(x) = f_i(\lim_{m \to \infty} \sum_{k=1}^m \alpha_k x_k) = (f \in X^*) = \lim_{m \to \infty} f_i(\sum_{k=1}^m \alpha_k x_k) =$$

$$= (f - \text{линеен}) = \lim_{m \to \infty} \sum_{k=1}^m \alpha_k f_i(x_k) = \left(f_i(x_k) = \begin{cases} 0, & i \neq k \\ 1, & i = k \end{cases}\right) = \alpha_i$$

Тогда

$$x = \sum_{i=1}^{\infty} f_i(x) x_i$$

Рассмотрим второе равенство. Функционалы равны, если совпадает действие на любом элементе:

$$f(x) = f(\lim_{m \to \infty} \sum_{i=1}^{m} f_i(x)x_i) = \lim_{m \to \infty} f(\sum_{i=1}^{m} f_i(x)x_i) =$$
$$= \lim_{m \to \infty} \sum_{i=1}^{m} f_i(x)f(x_i) = \sum_{i=1}^{\infty} f_i(x)\underbrace{f(x_i)}_{\text{ЧИСЛО}}$$

Получили, что действие f — есть комбинация действий f_i :

$$f = \sum_{i=1}^{\infty} f(x_i) f_i$$

Замечание 3.4. Ясно, что f_i — линейно независимая система. Таким образом, из теоремы следует, что $\{f_m\}$ — базис в сопряжённом пространстве.

4 Компактные множества в нормированных пространствах

Опр 4.1. Пусть X — нормированное пространство. Множество $M \subset X$ относительно компактно, если из любой его последовательности элементов можно извлечь фундаментальную подпоследовательность.

Mножество M называется компактным, если из любой его последовательности элементов можно извлечь подпоследовательность, сходящуюся к элементу из M.

Утв 4.1. Любое компактное множество M замкнуто.

Доказательство. (В курсе лекций не приводилось)

Выберем последовательность $\{x_n\} \subset M \mid x_n \xrightarrow[n \to \infty]{} x_0$.

Последовательность $\{x_n\}$ является своей подпоследовательностью, следовательно, т.к. M компактно, $x_0 \in M$.

Таким образом, получаем, что $M = \overline{M}$.

Утв 4.2. Любое компактное множество M ограничено.

Доказательство. (В курсе лекций не приводилось)

Докажем от противного, пусть множество M неограничено, т.е.

$$\exists \{x_n\} \subset M \mid ||x_n|| > n$$

Очевидно, что тогда из $\{x_n\}$ нельзя выбрать сходящуюся подпоследовательность. Пришли к противоречию с компактностью множества M.

Замечание 4.1. Из компактности следует замкнутость и ограниченность. Обратное неверно: Пусть H — бесконечномерное гильбертово пространство, $\{e_n\}$ — его базис. Множество $\{e_n\}$ ограничено и замкнуто, но не компактно:

$$\forall n, \, m, \, n \neq m : \|e_n - e_m\| = \sqrt{2}$$

Теорема 4.1 (**Вейерштрасса**). Пусть f — вещественный непрерывный функционал, определённый на компактном множестве M, тогда f ограничен и достигает наибольшего и наименьшего значений на M.

Упр 4.1. Доказать теорему **4.1**. (см. стр. **91**)

Теорема 4.2. Относительно компактное множество M компактно $\Leftrightarrow M$ замкнуто.

Упр 4.2. Доказать теорему 4.2. (см. стр. 92)

Опр 4.2. Пусть $\varepsilon > 0$. Множество M_{ε} называется ε -сетью для M, если выполняется:

$$\forall x \in M \,\exists x_{\varepsilon} \in M_{\varepsilon} \, | \, ||x - x_{\varepsilon}|| < \varepsilon$$

Теорема 4.3 (Хаусдорфа). Пусть X — нормированное пространство. Множество $M \subset X$ относительно компактно $\Leftrightarrow \forall \varepsilon > 0$ в пространстве X существует конечная ε —сеть для M.

Доказательство. (\Rightarrow) Пусть $M \subset X$ относительно компактно. Выберем $\varepsilon > 0$. Возьмём $x_1 \in M$.

Если $\forall x \in M : ||x-x_1|| < \varepsilon$, то получили искомую ε -сеть из одного элемента.

Если же это не так, то

$$\exists x_2 \in M \mid ||x_1 - x_2|| \geqslant \varepsilon$$

Если $\forall x \in M: \|x-x_1\| < \varepsilon$ или $\|x-x_2\| < \varepsilon$, то получили искомую ε -сеть из двух элементов.

Если же это не так, то

$$\exists x_3 \in M \mid ||x_1 - x_3|| \geqslant \varepsilon, ||x_2 - x_3|| \geqslant \varepsilon$$

Процесс либо оборвётся, и мы получим конечную ε —сеть, либо не оборвётся, и мы получим последовательность $\{x_n\}$ такую, что $\forall n \neq m$:

$$||x_n - x_m|| \geqslant \varepsilon$$

Из этой последовательности невозможно выбрать сходящуюся подпоследовательность, что противоречит относительной компактности множества M.

(⇐) Пусть $\forall \varepsilon > 0$ в X существует конечная ε -сеть для M.

Возьмём последовательность $\{\varepsilon_n\}$ $\xrightarrow[n\to\infty]{}$ 0. Для каждого ε_n существует конечная ε_n —сеть—получаем последовательность $\{M_{\varepsilon_n}\}$.

Рассмотрим $\{x_n\} \subset M$. Докажем, что существует хотя бы одна сходящаяся подпоследовательность.

Если для ε —сети возьмём шары с центрами в точках из M_{ε} и радиусами ε , то имеем:

$$M \subset \bigcup_{x \in M_{\varepsilon}} B_{\varepsilon}(x)$$

В частности, для $\varepsilon = \varepsilon_1$:

$$M\subset \bigcup_{i_1=1}^{m_1}B_{arepsilon_1}(x_{i_1})$$
, где m_1 — мощность $arepsilon_1$ —сети.

Хотя бы в одном из этих шаров будет лежать бесконечно много элементов последовательности $\{x_n\}$. Обозначим этот шар через B_1 , а через N_1 — подпоследовательность из $\{x_n\}$, принадлежащую B_1 . Зафиксируем элемент из N_1 , например, имеющий наименьший номер. Обозначим его через x_{n_1} .

Перейдём к ε_2 -сети:

$$M\subset igcup_{i_2=1}^{m_2}B_{arepsilon_2}(x_{i_2})$$
, где m_2- мощность $arepsilon_2-$ сети.

Существует такой i_2 , что шар $B_{\varepsilon_2}(x_{i_2})$ содержит бесконечное число элементов последовательности N_1 . Обозначим этот шар через B_2 , а через N_2 — подпоследовательность из N_1 , принадлежащую B_2 . Зафиксируем элемент из N_2 , имеющий наименьший номер, больший n_1 . Обозначим его через x_{n_2} .

Продолжая по аналогии, получаем последовательность $\{x_{n_k}\}_{k\in\mathbb{N}}$. Покажем, что она фундаментальная.

Имеем: B_k — семейство вложенных шаров; $x_{n_l} \in B_k$ при $l \geqslant k$. Пусть x_k^o — центр шара B_k , тогда:

$$||x_{n_k} - x_{n_{k+p}}|| = ||x_{n_k} - x_k^o + x_k^o - x_{n_{k+p}}|| \le ||x_{n_k} - x_k^o|| + ||x_{n_{k+p}} - x_k^o|| < 2\varepsilon_k$$

Последнее неравенство верно в силу вложенности шаров. По построению $\varepsilon_k \xrightarrow[k \to \infty]{} 0$, следовательно, $\{x_{n_k}\}$ фундаментальна и, тем самым, имеет предел (который необязательно принадлежит X). В итоге получаем, что M относительно компактно.

Следствие 4.1. Пусть X — полное нормированное пространство. Если $\forall \varepsilon > 0$ для $M \subset X$ существует относительно компактная ε —сеть, то M относительно компактное множество.

Упр 4.3. Доказать следствие 4.1. (см. стр. 92)

Следствие 4.2. Всякое относительно компактное подмножество M нормированного пространства X сепарабельно.

Упр 4.4. Доказать следствие 4.2. (см. стр. 93)

__(Лекция №6, 11.10.2010)

Утв 4.3. В нормированном пространстве последовательность непустых вложенных друг в друга компактных множеств имеет непустое пересечение.

Упр 4.5. Доказать утверждение 4.3.

Опр 4.3. Пусть задано семейство множеств $\{G_{\alpha}\}_{{\alpha}\in A}$, каждое из которых является открытым. $\{G_{\alpha}\}$ называется открытым покрытием множества M, если

$$M\subset \bigcup_{lpha\in A}G_lpha,$$
 где $A-$ множество индексов

Теорема 4.4. Пусть X — нормированное пространство, $M \subset X$ — замкнутое подмножество X. Тогда M компактно \Leftrightarrow из всякого открытого покрытия множества M можно извлечь конечное подпокрытие.

Доказательство. (\Rightarrow) Пусть M компактно. Будем доказывать от противного.

Пусть имеется $\{G_{\alpha}\}$ — открытое покрытие, и из него нельзя извлечь конечное подпокрытие.

Возьмём последовательность $\{\varepsilon_n\}$ $\xrightarrow[n\to\infty]{}$ 0. По теореме Хаусдорфа (теорема 4.3) существует ε_1 —сеть, образованная конечным набором точек x_1,\ldots,x_{n_1} . По определению ε —сети имеем:

$$M \subset \bigcup_{i=1}^{n_1} \overline{B}_{\varepsilon_1}(x_i)$$

Обозначим $M_i = M \cap \overline{B}_{\varepsilon_1}(x_i)$. Тогда $M = \bigcup M_i$. По предположению не существует конечного подпокрытия, следовательно, не будет иметь конечного подпокрытия хотя бы одно M_i . Обозначим это подмножество через K_1 .

M — компакт $\Rightarrow M$ — замкнуто $\Rightarrow \forall i: M \cap \overline{B}_{\varepsilon_1}(x_i)$ — замкнуто $\Rightarrow K_1$ — замкнуто. M — компакт $\Rightarrow M$ — относительно компактно $\Rightarrow M_i$ — относительно компактно \Rightarrow по теореме 4.2 M_i — компакт $\Rightarrow K_1$ — компакт.

 K_1 является компактным множеством, следовательно, по теореме 4.3 для множества K_1 существует ε_2 —сеть, образованная конечным набором точек x_1, \ldots, x_{n_2} . Далее аналогично:

$$K_1 = \bigcup_{i=1}^{n_2} \widetilde{K}_i,$$
 причём $\exists j \mid \widetilde{K}_j$ не имеет конечного подпокрытия Обозначим: $K_2 = \widetilde{K}_j$

В итоге получаем $\{K_n\}$ — семейство вложенных друг в друга компактов. По утверждению 4.3 существует непустое пересечение. Получаем:

$$\left. \begin{array}{l} x^* \in \bigcap_{i=1}^{\infty} K_i \\ M \subset \bigcup_{\alpha \in A} G_{\alpha} \end{array} \right\} \Rightarrow \exists \alpha_0 \in A \mid x^* \in G_{\alpha_0}$$

Имеем:

$$0 \leqslant \operatorname{diam} K_i \leqslant 2\varepsilon_i \xrightarrow[i \to \infty]{} 0 \Rightarrow \lim_{i \to \infty} \operatorname{diam} K_i = 0$$
$$\exists R > 0 \mid B_R(x^*) \subset G_{\alpha_0}$$

Следовательно, найдётся такой $n_0 \in \mathbb{N}$, что $K_{n_0} \subset B_R(x^*)$. Таким образом, получили покрытие множества K_{n_0} множеством $B_R(x^*)$ — конечное подпокрытие из $\{G_{\alpha_0}\}$. Пришли к противоречию с выбором K_i .

 (\Leftarrow) Пусть M таково, что из любого его открытого покрытия можно выбрать конечное подпокрытие.

Будем доказывать от противного. Пусть M не является компактом. Тогда $\exists \{x_n\} \subset M$, у которой не существует сходящихся в M подпоследовательностей:

$$\#\{x_{n_k}\} \subset \{x_n\} \mid \{x_{n_k}\} - \operatorname{сходится}$$

Определим семейство шаров произвольного радиуса $B_{\varepsilon}(x)$, где $x \in M$, $\varepsilon \in \mathbb{R}, \varepsilon > 0$. Это континуальное семейство. Очевидно, что оно будет являться открытым покрытием множества M:

$$M \subset \bigcup_{\substack{x \in M \\ \varepsilon > 0}} B_{\varepsilon}(x)$$

Уменьшая ε , добиваемся того, что каждый шар $B_{\varepsilon}(x)$ содержит не более одного элемента последовательности $\{x_n\}$. Получим вновь открытое покрытие M. Следовательно, по условию теоремы, существует конечное подпокрытие в этом покрытии. Но отсюда следует, что последовательность $\{x_n\}$ имеет конечное число элементов, чего быть не может. Пришли к противоречию.

Опр 4.4. Пусть X — нормированное пространство, $M \subset X$. Множество M называется локально относительно компактным, если пересечение M с любым замкнутым шаром из X будет относительно компактным.

Опр 4.5. Пусть X — нормированное пространство, $M \subset X$. Множество M называется локально компактным, если пересечение M с любым замкнутым шаром из X будет компактным.

Лемма 4.1 (Рисса о почти перпендикуляре). Пусть X — нормированное пространство. L — строгое подпространство X ($L \neq X$). Тогда:

$$\forall \varepsilon \in (0,1): \exists z_{\varepsilon} \notin L \mid ||z_{\varepsilon}|| = 1$$
 и $\rho(z_{\varepsilon},L) > 1 - \varepsilon$

Под метрикой понимается следующее: $\rho(x,y) = \|x-y\|$

Доказательство. Возьмём произвольный $x \in X \setminus L$. Тогда получаем: $d = \rho(x, L) = \inf_{y \in L} \rho(x, y) > 0$ (т.к. L — подпространство, то L замкнуто). По определению точной нижней грани:

$$\exists u_{\varepsilon} \in L \mid d \leqslant ||u_{\varepsilon} - x|| < \frac{d}{1 - \varepsilon} \quad (\star)$$

Определим

$$z_{arepsilon}=rac{u_{arepsilon}-x}{\|u_{arepsilon}-x\|}
ot\in L,$$
 т.к. $x
ot\in L$ (иначе $u_{arepsilon}-x\in L\Rightarrow x\in L$)

Очевидно, что $||z_{\varepsilon}||=1$. Выберем произвольный $u\in L$. Тогда:

$$||z_{\varepsilon} - u|| = ||\frac{u_{\varepsilon} - x}{||u_{\varepsilon} - x||} - u|| =$$

$$= \frac{1}{||u_{\varepsilon} - x||} \cdot ||\underbrace{u_{\varepsilon} - u \cdot ||u_{\varepsilon} - x||}_{\in L} - x|| > 1 + \varepsilon \Rightarrow$$

$$\inf_{u \in L} ||z_{\varepsilon} - u|| = \rho(z_{\varepsilon}, L) > 1 - \varepsilon$$

Теорема 4.5 (**Рисса**). Пусть X— нормированное пространство. $L \subset X$ —линейное многообразие. Тогда L локально относительно компактно $\Leftrightarrow L$ конечномерно.

Доказательство. (\Rightarrow) Пусть линейное многообразие L локально относительно компактно в X. Будем доказывать от противного, т.е. предположим, что L бесконечномерно.

Возьмём $x_0 \in X, R > 0$. Имеем: $\overline{B}_R(x_0) \cap L$ — относительно компактно в X, т.к L является локально относительно компактным.

Т.к. L является линейным многообразием, то $\exists x_1 \in L \mid ||x_1|| = 1$. Определим:

$$z_1 = x_0 + Rx_1$$
 $M_1 = \{x \mid x = \lambda x_1\}$ — подпространство L

Применим лемму 4.1 для L и M_1 :

$$\exists x_2 \in L \setminus M_1 \mid ||x_2|| = 1$$
 и $\rho(x_2, M_1) > \frac{1}{2}$

Определим: $z_2 = x_0 + Rx_2$. Очевидно, что $z_2 \in \overline{B}_R(x_0)$. Имеем:

$$||z_2 - z_1|| = R||x_2 - \underbrace{x_1}_{\in M_1}|| > R \cdot \frac{1}{2} = \frac{R}{2}$$

Продолжим построение. Пусть уже построены

$$z_k = x_0 + Rx_k \quad \forall k \in \{1, 2, \dots, n\}$$

Построим x_{n+1} . Пусть M_n — подпространство, порождённое элементами x_1,\ldots,x_n , т.е. $M_n=\mathrm{span}\{x_1,\ldots x_n\}$. Поскольку L бесконечномерно, то $M_n\neq L$.

Так как M_n конечномерно \Rightarrow оно замкнуто \Rightarrow можно применить лемму 4.1, получаем:

$$\exists x_{n+1} \in L \setminus M_n \mid ||x_{n+1}|| = 1$$
 и $\rho(x_{n+1}, M_n) > \frac{1}{2}$

Определим:

$$z_{n+1} = x_0 + Rx_{n+1} \in \overline{B}_R(x_0)$$

Получили бесконечные последовательности $\{x_n\}$ и $\{z_n\}$. По построению:

$$||z_{n+1} - z_k|| > \frac{R}{2} \quad \forall k \in \{1, 2, \dots, n\} \quad (\star)$$

Имеем: $z_n \in L \ \forall n \Rightarrow \{z_n\} \subset \overline{B}_R(x_0) \cap L$, следовательно, т.к. $\overline{B}_R(x_0) \cap L$ относительно компактно, в $\{z_n\}$ можно выделить сходящуюся подпоследовательность. Но это противоречит (\star) . Пришли к противоречию, значит L конечномерно

 (\Leftarrow) Пусть L конечномерно. Возьмём $B\subset X$ — произвольный замкнутый шар. Тогда $L\cap B$ — ограничено. По теореме Больцано-Вейерштрасса в конечномерном пространстве любая ограниченная последовательность имеет сходящуюся подпоследовательность. Т.е. $L\cap B$ относительно компактно. В силу произвольности выбора B получаем, что L локально относительно компактно.

Опр 4.6. Пусть X — нормированное пространство. Множество $M \subset X$ называется слабо относительно компактным, если из любой последовательности его элементов можно извлечь слабо сходящуюся подпоследовательность.

Опр 4.7. Пусть X — нормированное пространство. Множество $M \subset X$ называется слабо компактным, если из любой последовательности его элементов можно извлечь слабо сходящуюся подпоследовательность, предел которой принадлежит M.

Теорема 4.6. Всякое слабо относительно компактное подмножество нормированного пространства X ограничено.

Доказательство. Будем доказывать от противного.

Пусть M слабо относительно компактно и M не ограничено. Тогда

$$\forall n \in \mathbb{N} : \exists x_n \in M \mid ||x_n|| > n$$

Получили последовательность элементов множества M. По определению 4.6 из $\{x_n\}$ можно извлечь слабо сходящуюся подпоследовательность $\{x_{n_k}\}$. Тогда по теореме 3.5 получаем, что $\{\|x_{n_k}\|\}$ ограничена. Но $\|x_{n_k}\| > n_k \ \forall k$. Пришли к противоречию.

Теорема 4.7 (о выборе). Пусть X рефлексивное банахово пространство. Тогда всякое ограниченное $M \subset X$ —слабо относительно компактно.

Доказательство. Докажем в частном случае, когда X — гильбертово пространство. Переформулируем тогда условие теоремы:

Пусть H — гильбертово пространство. Тогда из любой ограниченной последовательности его элементов можсно извлечь слабо сходящуюся подпоследовательность.

Пусть $\{x_n\}\subset H$ ограничена. Рассмотрим числовую последовательность $\{(x_n,x_1)\}$. Она будет ограничена. Следовательно, по числовому принципу Больцано-Вейерштрасса

$$\exists \{x_{n_k}\} \subset \{x_n\} \, \big| \, \{(x_{n_k}, x_1)\} - \text{сходится}$$

Обозначим $y_1 = x_{n_1}$. По аналогии рассмотрим $\{(x_{n_k}, x_2)\}$:

$$\exists \{x_{n_{k_l}}\} \subset \{x_{n_k}\} \, \big| \, \{(x_{n_{k_l}}, x_2)\} -$$
сходится

Обозначим $y_2 = x_{n_{k_1}}$. И так далее. В итоге получаем последовательность $\{y_k\}$, причём последовательность $\{(y_k, x_m)\}$ сходится при $k \to \infty \ \forall m$, и $\{y_k\}$ является подпоследовательностью $\{x_n\}$.

Покажем, что $\{y_k\}$ — искомая, т.е. $\{y_k\}$ слабо сходится. По теореме 3.7 Рисса о представлении линейного непрерывного функционала это равносильно тому, что $\forall x \in H \{(y_k, x)\}$ — сходится.

Если $x = \sum_{k=1}^{n} \alpha_k x_k$, то сходимость очевидна. Т.е. на $\mathrm{span}\{x_1, \dots x_n\}$ сходимость есть.

Рассмотрим замыкание $\overline{\text{span}\{x_1,\ldots x_n\}}$:

$$x = \lim_{l \to \infty} z_l = \sum_{k=1}^{\infty} \alpha_k x_k$$

Заметим, что для $\forall l$ и фиксированном z_l последовательность $\{(y_k, z_l)\}$ сходится при $k \to \infty$. Обозначим:

$$\alpha_l = \lim_{k \to \infty} (y_k, z_l)$$

Оценим:

$$\begin{aligned} |\alpha_{l} - \alpha_{l+p}| &= |\lim_{k \to \infty} (z_{l}, y_{k}) - \lim_{k \to \infty} (z_{l+p}, y_{k})| = \lim_{k \to \infty} |(z_{l}, y_{k}) - (z_{l+p}, y_{k})| = \\ &= \lim_{k \to \infty} |(z_{l} - z_{l+p}, y_{k})| \leqslant_{\text{(нер-во Коши-Буняковского)}} \lim_{k \to \infty} ||z_{l} - z_{l+p}|| \cdot ||y_{k}|| \end{aligned}$$

Последовательность $\{y_k\}$ ограничена, т.к. $\{x_n\}$ ограничена.

Поскольку ряд $\sum_{k=1}^{\infty} \alpha_k x_k$ сходится, то по критерию Коши последователь-

ность его частичных сумм является фундаментальной, т.е. величину $\|z_l-z_{l+p}\|$ мы можем сделать сколь угодно малой. Тогда величину $|\alpha_l-\alpha_{l+p}|$ мы также можем сделать сколь угодно малой. Таким образом, $\{\alpha_l\}$ фундаментальна, следовательно, сходится. Обозначим предел через α_0 :

$$\alpha_l \xrightarrow[l \to \infty]{} \alpha_0$$

Пусть $\varepsilon > 0$. Поскольку $z_l \xrightarrow[l \to \infty]{} x$, то

$$\exists l_0 \in \mathbb{N} \mid \forall l > l_0 : ||x - z_l|| \cdot ||y_k|| < \frac{\varepsilon}{3}$$

Далее для фиксированного l:

$$\exists k_0 \mid \forall k > k_0 : \mid (z_l, y_k) - \alpha_l \mid < \frac{\varepsilon}{3}$$
$$\exists l_1 \mid \forall l > l_1 : \mid \alpha_l - \alpha_0 \mid < \frac{\varepsilon}{3}$$

Получаем:

$$\begin{split} |(x,y_k) - \alpha_0| &= |(x,y_k) - (z_l,y_k) + (z_l,y_k) - \alpha_l + \alpha_l - \alpha_0| \leqslant \\ &\leqslant |(x,y_k) - (z_l,y_k)| + |(z_l,y_k) - \alpha_l| + |\alpha_l - \alpha_0| \leqslant \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \text{ при } l > \max(l_0,l_1), k > k_0 \end{split}$$

T.e. $\{(x, y_k)\}$ сходится к α_0 для $\forall x \in \overline{\operatorname{span}\{x_1, \dots x_n\}}$.

Обозначим $L = \overline{\text{span}\{x_1, \dots x_n\}}$. Пусть теперь $x \notin L$, т.е. $x \in H \setminus L$. Т.к. L является подпространством H, то по теореме о разложении:

$$x = u + v$$
, где $u \in L, v \in L^{\perp}$

Тогда

$$(x,y_k)=(u,y_k)+(v,y_k)=(u,y_k)+0=(u,y_k), \text{ T.K. } y_k\in L$$

Т.е. задача доказательства сходимости последовательности $\{(x,y_k)\}$ сводится к доказательству сходимости последовательности $\{(u,y_k)\}$, где $u,y_k\in L$. Но для такой последовательности сходимость уже доказана, следовательно, $\{y_k\}$ — искомая.

Утв 4.4. Открытый шар в бесконечномерном пространстве не является относительно компактным множеством.

Упр 4.6. Доказать утверждение **4.4**

__(Лекция №7, 18.10.2010)

Утв 4.5. Всякое компактное множество в бесконечномерном нормированном пространстве — нигде не плотное множество.

Упр 4.7. Доказать утверждение 4.5. (см. стр. 93)

Утв 4.6. Всякое рефлексивное пространство — слабо полное. (Слабо банахово)

Упр 4.8. Доказать утверждение 4.6. (см. стр. 93)

4.1 Критерии относительной компактности в некоторых функциональных пространствах

 $\mathbf B$ пространстве C[a,b]

Опр 4.8. Пусть задано семейство функций $\mathcal{M} \subset C[a,b]$. \mathcal{M} называется равномерно ограниченным, если существует такое K, что

$$\forall f \in \mathcal{M} \ \forall x \in [a, b]: \ |f(x)| \leqslant K$$

Опр 4.9. Семейство функций $\mathcal{M} \subset C[a,b]$ называется равностепенно непрерывным, если

$$\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \, \big| \, \forall x', x'' \in [a, b], \, |x' - x''| < \delta, \, \, \forall f \in \mathcal{M} : \\ |f(x') - f(x'')| < \varepsilon$$

3амечание 4.2. Если $\mathcal M$ состоит всего из одной функции f, то равностепенная непрерывность $\mathcal M$ является равномерной непрерывностью f.

Утв 4.7 (**Теорема Арцела-Асколи**). Множество $\mathcal{M} \subset C[a,b]$ относительно компактно тогда и только тогда, когда оно равномерно ограничено и равностепенно непрерывно.

Замечание 4.3. Теорема справедлива и в случае $\mathcal{M} \subset C[Q]$, где Q — компактное в \mathbb{R}^n множество, или Q — замкнутое ограниченное множество в нормированном пространстве X.

В пространстве $L_p(Q)$, где $p \ge 1$, $Q \subset \mathbb{R}^n$ - ограниченное, измеримое по Лебегу множество. Считаем, что в $\mathbb{R}^n \setminus Q$ функции продолжены нулями.

Опр 4.10. Семейство функций $\mathcal{M} \subset L_p[Q]$ называется равномерно ограниченным, если существует такое K, что

$$\forall f \in \mathcal{M}: ||f||_{L_n} \leqslant K$$

Опр 4.11. Семейство функций $\mathcal{M} \subset L_p(Q)$ называется равномерно непрерывным в среднем, если

$$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) \, \big| \, \forall h \in \mathbb{R}^n, \; ||h|| < \delta, \; \forall f \in \mathcal{M} :$$

$$\left(\int_{O} |f(x+h) - f(x)|^p dx \right)^{\frac{1}{p}} < \varepsilon$$

Утв 4.8 (**Teopema Pucca**). Множество функций $\mathcal{M} \subset L_p(Q)$ относительно компактно тогда и только тогда, когда оно равномерно ограничено и равномерно непрерывно в среднем.

В пространстве $l_p, p \geqslant 1$

Утв 4.9. Множество $\mathcal{M} \subset l_p$ является относительно компактным тогда и только тогда, когда \mathcal{M} равномерно ограничено и

$$\forall \varepsilon > 0 \; \exists N = N(\varepsilon) \; \big| \; \forall x \in \mathcal{M} \;$$
выполняется
$$\left(\sum_{n=N+1}^{\infty} |x_n|^p \right)^{\frac{1}{p}} < \varepsilon$$

5 Теория разрешимости функциональных уравнений

5.1 Уравнения с вполне непрерывными операторами

Опр 5.1. Линейный оператор $A: X \to Y$ называется вполне непрерывным, если A - непрерывный и A переводит замкнутый единичный шар $\overline{B_1}(0) \subset X$ в относительно компактное в Y множество.

Пример 5.1. В любом бесконечномерном пространстве тождественный оператор не является вполне непрерывным.

Свойства вполне непрерывных операторов:

- 1. Любой линейный непрерывный оператор $A:X\to Y$ является вполне непрерывным, если хотя бы одно из пространств X,Y конечномерно.
- 2. Любой линейный ограниченный функционал является вполне непрерывным оператором.

3. Если $A: X \xrightarrow{\operatorname{Ha}} Y, B: Y \to Z$ — линейные непрерывные операторы, и хотя бы один их них является вполне непрерывным оператором, то оператор C = BA является вполне непрерывным оператором.

Теорема 5.1. Совокупность всех линейных вполне непрерывных операторов, отображающих X в Y, есть подпространство $\mathcal{L}(X,Y)$

Обозначение: $\sigma(X,Y)$

Доказательство. Очевидно, что $\sigma(X,Y)$ — подмножество $\mathcal{L}(X,Y)$ Упр 5.1. Доказать:

- $A \in \sigma \Rightarrow \lambda A \in \sigma$
- $A, B \in \sigma \Rightarrow (A+B) \in \sigma$

Осталось показать замкнутость σ в \mathcal{L} . Пусть $\{A_n\} \subset \sigma$ — семейство операторов и $\{A_n\} \to A$. Тогда нужно доказать, что $A \in \sigma$.

 $A \in \mathcal{L}(X,Y)$ — очевидно (по теореме из второго курса). Имеем:

$$A_n: \overline{B_1}(0) \to W_n \ (W_n \ \text{относительно компактно в } Y)$$

Возьмем $\{x_m\} \subset \overline{B_1}(0) \Rightarrow \{x_m\}$ — ограничена. Необходимо доказать, что $\{Ax_m\}$ — относительно компактна. Зададим произвольное $\varepsilon > 0$. Тогда

$$A_n \xrightarrow[n \to \infty]{} A;$$
 $\{x_m\}$ — ограничена $\Rightarrow \exists n_0 = n_0(\varepsilon) \mid \|A_{n_0}x_m - Ax_m\| < \frac{\varepsilon}{3}$

Обозначим $y_m = A_{n_0} x_m$. Оператор A_{n_0} вполне непрерывен \Rightarrow из $\{y_m\}$ можно извлечь сходящуюся подпоследовательность $\{y_{m_k}\}$. Причем, $\{y_{m_k}\}$ определяет $\{x_{m_k}\}$.

Покажем, что $\{x_{m_k}\}$ — искомая. То есть, нужно доказать

$$||Ax_{m_k} - Ax_{m_l}|| \xrightarrow[k,l \to \infty]{} 0$$

Имеем

$$\|Ax_{m_k} - Ax_{m_l}\| =$$

$$= \|Ax_{m_k} - A_{n_0}x_{m_k} + A_{n_0}x_{m_k} - A_{n_0}x_{m_l} + A_{n_0}x_{m_l} - Ax_{m_l}\| \le$$

$$\le \|Ax_{m_k} - A_{n_0}x_{m_k}\| + \|A_{n_0}x_{m_k} - A_{n_0}x_{m_l}\| + \|A_{n_0}x_{m_l} - Ax_{m_l}\| <$$

$$(\text{при } k, l \to \infty) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Лемма 5.1. X — нормированное пространство. Если $\{x_n\} \subset X$ слабо сходится и относительно компактна, то $\{x_n\}$ сходится по норме.

Доказательство. Пусть $x_n \xrightarrow{\text{слаб.}} x_0$ в X. Докажем от противного. Пусть x_n не сходится к x_0 по норме, что означает

$$\exists \varepsilon_0 \ \exists \{n_k\} \mid ||x_{n_k} - x_0|| > \varepsilon_0 \ \forall k.$$

40

С другой стороны, $\{x_n\}$ относительно компактно, следовательно любая подпоследовательность $\{x_n\}$ относительно компактна, следовательно в $\{x_{n_k}\}$ найдется сходящаяся подпоследовательность $\{x_{n_{k_m}}\}$. Но должно выполняться $\|x_{n_{k_m}}-x_0\|>\varepsilon_0$. Это приводит к противоречию с относительной компактностью $\{x_n\}$.

Теорема 5.2. Пусть $A: X \to Y$, A—линейный, вполне непрерывный оператор, X, Y—нормированные пространства, и пусть $\{x_n\}$ —слабо сходящаяся последовательность. Тогда $\{Ax_n\}$ сходится сильно.

Доказательство. Последовательность $\{x_n\}$ сходится слабо \Rightarrow по теореме 3.4 последовательность $\{Ax_n\}$ сходится слабо.

Последовательность $\{x_n\}$ сходится слабо \Rightarrow по теореме 3.5 последовательность $\{\|x_n\|\}$ ограничена. Легко показать, что любое ограниченное множество вполне непрерывный оператор переводит в относительно компактное. Таким образом, получаем, что $\{Ax_n\}$ относительно компактно.

Используя лемму 5.1, получаем требуемое.

Теорема 5.3. Пусть $A: X \to Y$ — линейный, вполне непрерывный оператор, отображающий нормированное пространство X в банахово пространство Y.

Тогда $A^*:Y^*\to X^*$ — тоже вполне непрерывный оператор.

Доказательство. Рассмотрим единичные шары $\overline{B_1} \subset X$ и $\overline{B_1^*} \subset Y^*$.

Возьмём семейство функционалов $\{f_n\} \subset \overline{B_1^*}$, т.е. $\|f_n\| \leqslant 1$. Нужно доказать, что можно извлечь из $\{A^*f_n\}$ сходящуюся подпоследовательность.

Обозначим $\mathcal{M} = \{f_n(y)\}$. Имеем

$$|f_n(y)| \leqslant |f_n| \cdot ||y||$$

Следовательно, \mathcal{M} равномерно ограничено на любом ограниченном подмножестве Y.

Докажем равностепенную непрерывность:

$$|f_n(y') - f_n(y'')| = |f_n(y' - y'')| \le ||f_n|| \cdot ||y' - y''|| \le (||f_n|| \le 1) \le ||y' - y''||$$

Таким образом, получаем

$$\forall n, \forall \varepsilon > 0 : (\|y' - y''\| < \delta(\varepsilon) = \varepsilon) \Rightarrow (\|f_n(y') - f_n(y'')\| < \varepsilon)$$

Поскольку оператор A является вполне непрерывным, то множество $M = A\overline{B_1} \subset Y$ относительно компактно, замкнуто и ограничено \Rightarrow (по усиленной теореме Арцела-Асколи 4.7) \Rightarrow

$$\{f_n(y)\}_{y\in M}$$
 — относительно компактно и замкнуто в $C[M]$

Следовательно, существует сходящаяся в норме C[M] подпоследовательность $\{f_{n_k}\}$.

Имеем

$$\mathcal{M} \subset C[M]$$

Следовательно, $\{f_{n_k}(Ax)\}$ сходится равномерно на $\overline{B_1}$. По определению сопряженного оператора:

$$f_{n_k}(Ax) = (A^* f_{n_k})(x)$$

То есть, $\{A^*f_{n_k}\}$ - семейство функционалов, $\forall x \in \overline{B_1}$ равномерно сходящееся к некоторому функционалу f_0 .

Из равномерной сходимости следует

$$\|(A^*f_{n_k})x - (A^*f_{n_{k+p}})x\| \xrightarrow[k,p\to\infty]{} 0 \quad \forall x \in \overline{B_1}$$

Распишем по определению:

$$||A^*f_{n_k} - A^*f_{n_{k+p}}|| = \sup_{\|x\| \le 1} ||(A^*f_{n_k} - A^*f_{n_{k+p}})x||$$

Из равномерной сходимости следует, что эту величину можно сделать сколь угодно малой, а значит, последовательность $\{A^*f_{n_k}\}$ фундаментальна, следовательно, она сходится. Таким образом, получаем, что оператор A^* вполне непрерывен.

Замечание 5.1. Обратное тоже верно, т.е.:

Линейный оператор A вполне непрерывный тогда и только тогда, когда A^* вполне непрерывен.

5.2 Уравнения Фредгольма

Опр 5.2. Пусть $A: X \to X$ — линейный оператор, X — нормированное пространство. Уравнение

$$x - Ax = y, y \in X$$

называется уравнением Фредгольма второго рода.

Опр 5.3. Уравнение

$$f - A^* f = q, \ q \in X^*$$

называется сопряженным уравнением Φ редгольма второго рода.

Опр 5.4. *Уравнение*

$$Ax = y$$

называется уравнением Фредгольма первого рода.

Опр 5.5. Если y = 0 или g = 0, то соответствующее уравнение называется однородным.

Теорема 5.4. Пусть $A: X \to X$ — линейный, вполне непрерывный оператор, где X— банахово пространство. Тогда множества значений операторов I-A и I^*-A^* замкнуты.

Доказательство. Докажем для I-A. (Для I^*-A^* - аналогично). Т.е. нужно доказать, что если $\{y_n\} \subset R(I-A)$ и сходится, то её предел принадлежит R(I-A).

Определим x_n :

$$x_n - Ax_n = y_n$$

Таким образом, по $\{y_n\}$ получили последовательность $\{x_n\} \subset X$. Она может быть либо ограниченной либо неограниченной. Разберём по случаям.

1) Пусть $\{x_n\}$ — ограничена.

Тогда $\{Ax_n\}$ — относительно компактно (из свойств вполне непрерывности), следовательно

$$\exists \{n_k\} \mid \{Ax_{n_k}\}$$
 — сходящаяся

Имеем

$$x_{n_k}-Ax_{n_k}=y_{n_k}\Rightarrow$$

$$x_{n_k}=Ax_{n_k}+y_{n_k}\Rightarrow\{x_{n_k}\}-\text{сходится, т.е.}$$

$$\lim_{k\to\infty}x_{n_k}=x_0\in X\ (\text{т.к. }X\text{ - банахово})$$

Отсюда получаем

$$y_{n_k} \xrightarrow[k\to\infty]{} x_0 - Ax_0$$

Положим $y_0 = x_0 - Ax_0 \in R(I-A)$. В силу единственности предела получаем

$$y_n \xrightarrow[n\to\infty]{} y_0$$

2) Пусть $\{x_n\}$ неограничена.

Обозначим $X_0 = N(I - A)$ — подпространство X.

Определим

$$d_n = \rho(x_n, X_0) = \inf_{z \in X_0} ||x_n - z||$$

Согласно определению точной нижней грани

$$\forall d_n \exists z_n \in X_0 \mid d_n \leqslant ||x_n - z_n|| \leqslant (1 + \frac{1}{n}) d_n \quad (\star)$$

Имеем:

$$(I-A)(x_n-z_n)=y_n$$
 т.к. $z_n\in X_0=N(I-A)$

Рассмотрим два случая:

2.1) $\{d_n\}$ — ограничена.

Тогда $\{\|x_n - z_n\|\}$ — ограничена, в силу (\star) .

Повторяя рассуждения из пункта ${f 1}$ для $\widetilde{x}_n=x_n-z_n$ получим требуемое.

2.2) $\{d_n\}$ — неограничена.

Покажем, что эта ситуация невозможна. Имеем

$$d_n$$
 — неограничена $\Rightarrow \exists \{n_k\} \mid d_{n_k} \xrightarrow[k \to \infty]{} \infty$

Переобозначив $d_k = d_{n_k}$ будем считать, что $d_n \xrightarrow[n \to \infty]{} \infty$.

Введём

$$u_n = \frac{x_n - z_n}{\|x_n - z_n\|}$$
 — ограничена, т.к. $\|u_n\| = 1$

Тогда

$$(I-A)u_n = \frac{y_n}{\|x_n - z_n\|} \xrightarrow[n \to \infty]{} 0, \text{ t.k. } \|x_n - z_n\| \to +\infty$$

Множество $\{Au_n\}$ относительно компактно в силу вполне непрерывности A, следовательно

$$\exists \{n_k\} \mid \{Au_{n_k}\}$$
 сходится к некоторому Au_0 при $k \to \infty$

Имеем

$$(I-A)u_{n_k} \xrightarrow[k\to\infty]{} 0 \Rightarrow (I-A)u_0 = 0 \Rightarrow u_0 \in X_0$$

Рассмотрим

$$|x_{n_k} - z_{n_k} - ||x_{n_k} - z_{n_k}||u_0| = ||x_{n_k} - z_{n_k}||(u_{n_k} - u_0)|$$

Имеем

$$z_{n_k} + \|x_{n_k} - z_{n_k}\|u_0 \in X_0$$
, т.к. $z_{n_k} \in X_0$ и $u_0 \in X_0$

Тогда получаем

$$||u_{n_k} - u_0||(1 + \frac{1}{n_k})d_{n_k} \geqslant (\star) \geqslant ||u_{n_k} - u_0|| \cdot ||x_{n_k} - z_{n_k}|| =$$

$$= ||(u_{n_k} - u_0)||x_{n_k} - z_{n_k}||| = ||x_{n_k} - \underbrace{(z_{n_k} + ||x_{n_k} - z_{n_k}||u_0)}_{\in X_0}|| \geqslant d_{n_k}$$

Сократив на d_{n_k} , получим

$$||u_{n_k} - u_0|| \geqslant \frac{n_k}{n_k + 1} \xrightarrow[k \to \infty]{} 1 \quad (\star\star)$$

Легко показать, что $u_{n_k} \to u_0$, что противоречит $(\star\star)$

Теорема 5.5. Пусть $A: X \to X$ — линейный, вполне непрерывный оператор, где X— банахово пространство. Тогда ядро оператора I-A конечномерно.

Доказательство. Выберем $M \subset N(I-A)$. Очевидно, что A(M) = M. Пусть M ограничено. Т.к. A вполне непрерывен, то A(M) относительно компактно, следовательно, M относительно компактно.

Тогда по теореме Рисса 4.5 получаем, что N(I-A) конечномерно.

Следствие 5.1. Линейный, вполне непрерывный оператор A может иметь лишь конечное число линейно независимых собственных элементов, отвечающих собственным значениям λ

$$Ax = \lambda x$$

Доказательство. Достаточно рассмотреть линейный оператор

$$I - \frac{1}{\lambda}A, \quad \lambda \neq 0$$

_(Лекция №8, 25.10.2010)

Теорема 5.6. Пусть X — банахово пространство, $A: X \to X$ — линейный, вполне непрерывный оператор.

Тогда уравнение Ax - x = y разрешимо для любого $y \in X \Leftrightarrow$ сопряженное однородное уравнение $A^*f - f = 0$ имеет только нулевое решение.

Доказательство. (\Rightarrow) Пусть $\forall y \in X \exists x_0 \in X \mid Ax_0 - x_0 = y$.

Докажем, что $A^*f - f = 0 \Leftrightarrow f = 0$.

В левую сторону очевидно, докажем в правую.

Рассмотрим значение f на конкретном элементе y:

$$f(y) = f(Ax_0 - x_0) = f(Ax_0) - f(x_0) = (A^*f)(x_0) - f(x_0) =$$

= $(A^*f - f)(x_0) = (\text{т.к. } f - \text{решение уравнения}) = 0$

 (\Leftarrow) Пусть выполняется

$$A^*f - f = 0 \Rightarrow f = 0$$

Докажем от противного. Пусть $\exists y \mid y \notin R(I - A)$ По теореме 5.4 R(I - A) замкнута $\Rightarrow \rho(y, R(I - A)) = d > 0$ Обозначим

$$L = R(I - A)$$

По следствию 3.2 теоремы Хана-Банаха

$$\exists f_0 \in X^* \ | \ f_0(y) = 1$$
, причем $\|f_0\| = \frac{1}{d}$ и $f_0(z) = 0 \ \forall z \in L$

Пусть $x \in X$ произвольный. Рассмотрим

$$f_0(\underbrace{Ax - x}) = (A^*f_0 - f_0)(x) = 0$$

Отсюда следует, что $f_0 = 0$, но это не так. Пришли к противоречию.

Теорема 5.7. Пусть X — банахово пространство, $A: X \to X$ — линейный, вполне непрерывный оператор.

Тогда уравнение $A^*f-f=g\in X^*$ разрешимо для данного функционала $g\Leftrightarrow g(x)=0\ \forall x\in N(I-A)$

Доказательство. (\Rightarrow) Пусть $A^*f - f = g$ разрешимо для данного g. Отсюда получаем, что

$$g(x) = (A^*f - f)(x) = f(Ax) - f(x) = f(Ax - x)$$

Возьмём $x \in N(I - A)$, тогда

$$Ax - x = 0 \Rightarrow g(x) = 0$$

(\Leftarrow) Пусть $g(x) = 0 \ \forall x \in N(I - A)$ Определим

$$L = \{y \mid y = Ax - x, x \in X\}$$
— подпространство X

Введём

$$f_0(y) = g(x)$$

Нужно доказать корректность определения функционала f_0 . Предположим, что $\exists x_1 \mid Ax_1 - x_1 = y$, причём y = Ax - x. Рассмотрим разность

$$A(x_1 - x) - (x_1 - x) = 0 \Rightarrow (x_1 - x) \in N(A - I) \Rightarrow$$

$$\Rightarrow g(x_1 - x) = 0 = g(x_1) - g(x) \Rightarrow g(x) = g(x_1)$$

Линейность f_0 очевидна, докажем ограниченность. Пусть x_0 такой, что $Ax_0 - x_0 = y$ ($y \in L \Rightarrow$ такой x_0 существует). Пусть $z \in N(A - I)$. Тогда множество $\{x_0 + z\}$ описывает все решения уравнения Ax - x = y.

Пусть x - решение уравнения Ax-x=y, тогда x можно представить в виде

$$x = x_0 + z$$

Введём

$$\varphi(z) = ||x_0 + z||$$

Обозначим

$$d = \inf_{z \in N(A-I)} \varphi(z)$$

По определению точной нижней грани, существует последовательность $\{z_n\} \, \big| \, \varphi(z_n) \xrightarrow[n \to \infty]{} d.$

Рассмотрим последовательность $\{x_0+z_n\}$. Т.к. $\varphi(z_n)$ сходится, то $\{x_0+z_n\}$ ограничена, а значит и $\{z_n\}$ — ограничена.

По теореме $5.5\ N(A-I)$ — конечномерно, следовательно, оно гильбертово и, следовательно, рефлексивно. Тогда по теореме 4.7

$$\exists \{n_k\} \, \big| \, z_{n_k}$$
 сходится слабо

Т.к. N(A-I) конечномерно, то, согласно упр. 3.1, слабая сходимость z_{n_k} эквивалентна сильной, значит

$$z_n \xrightarrow[n \to \infty]{} z_0 \in N(A - I)$$

Тогда

$$\varphi(z_n) \xrightarrow[n \to \infty]{} \varphi(z_0) \Rightarrow \varphi(z_0) = d$$

Т.е. точная нижняя грань достигается.

Обозначим

 $\widetilde{x} = x_0 + z_0$ — решение с минимальной нормой уравнения Ax - x = y

Положим

$$f_0(y) = g(\widetilde{x})$$

Нужно доказать, что

$$\exists M > 0 \mid |f_0(y)| \leq M||y||$$

Ho т.к. q - ограничен, то

$$|f_0(y)| = |g(\widetilde{x})| \leqslant K \|\widetilde{x}\|$$
, где K - некоторая константа

Докажем, что

$$\exists \alpha > 0 \mid \|\widetilde{x}\| \leqslant \alpha \|y\|$$
 (Отсюда и будет следовать требуемое)

Докажем от противного. (Предположим, что $y \neq 0$, иначе всё очевидно). Рассмотрим выражение

$$\frac{\|\widetilde{x}\|}{\|y\|}$$

Предположим, что оно неограничено, т.е.

$$\exists \{y_n\} \subset L \mid$$
 для соответствующих $\widetilde{x}_n : \frac{\|\widetilde{x}_n\|}{\|y_n\|} \xrightarrow[n \to \infty]{} \infty \quad (\star)$

Определим

$$\widetilde{\widetilde{x}}_n = rac{\widetilde{x}_n}{\|\widetilde{x}_n\|}$$
 $\widetilde{y}_n = rac{y_n}{\|\widetilde{x}_n\|} \xrightarrow[n o \infty]{} 0$ в силу (\star)

Оператор A — вполне непрерывен, следовательно, из последовательности $\{A\widetilde{\widetilde{x}}_n\}$ можно извлечь сходящуюся подпоследовательность. Переобозначим индексы и будем считать, что $\{A\widetilde{\widetilde{x}}_n\}$ сходится:

$$A\widetilde{\widetilde{x}}_n \xrightarrow[n \to \infty]{} A\widetilde{x}_0$$

Имеем:

$$A\widetilde{x}_n - \widetilde{x}_n = y_n$$

Поделим на $\|\widetilde{x}_n\|$, $(\|\widetilde{x}_n\| \neq 0$ в силу $\frac{\|\widetilde{x}_n\|}{\|y_n\|} \xrightarrow[n \to \infty]{} \infty)$:

$$A\widetilde{\widetilde{x}}_n - \widetilde{\widetilde{x}}_n = \widetilde{y}_n$$

Перейдя к пределу при $n \to \infty$ получим

$$A\widetilde{x}_0 - \widetilde{x}_0 = 0 \Rightarrow \widetilde{x}_0 \in N(A - I)$$

Рассмотрим

$$(A-I)(\widetilde{x}_n - \|\widetilde{x}_n\|\widetilde{x}_0) = (A-I)\widetilde{x}_n = y_n$$

При этом \tilde{x}_n имеет наименьшую норму среди $\{x \mid Ax - x = y_n\}$. Отсюда

$$\|\widetilde{x}_n - \|\widetilde{x}_n\| \cdot \widetilde{x}_0\| \geqslant \|\widetilde{x}_n\|$$

Поделим выражение на $\|\widetilde{x}_n\|$:

$$\|\widetilde{\widetilde{x}}_n - \widetilde{x}_0\| \geqslant 1$$

А это противоречит $\widetilde{\widetilde{x}}_n \xrightarrow[n \to \infty]{} \widetilde{x}_0$

Таким образом, ограниченность f_0 доказана.

__(Лекция №9, 01.11.2010)

Продолжим f_0 с L на X (по теореме 3.1 это возможно). Получаем новый функционал $f \in X^*$.

Пусть $x \in X$, тогда

$$f(Ax - x) = f(y) = (y \in L) = f_0(y) = g(x)$$

С другой стороны, по определению сопряжённого оператора

$$(A^*f - f)(x) = f(Ax - x)$$

Таким образом

$$A^*f - f = g$$

Т.е. построили решение уравнения для данного д.

Следствие 5.2. Если Ax - x = 0 имеет только нулевое решение, то уравнение $A^*f - f = g$ разрешимо для любого g.

Доказательство. Имеем

$$Ax - x = 0 \Leftrightarrow x = 0$$

Следовательно, ядро содержит только нулевой элемент, но $\forall g \in X^*$ выполняется: g(0)=0. Тогда по теореме уравнение $A^*f-f=g$ разрешимо для любого функционала g.

Теорема 5.8. Пусть X — банахово пространство, $A: X \to X$ — линейный, вполне непрерывный оператор.

Тогда для того, чтобы уравнение Ax-x=y было разрешимо при любом $y\in X$ необходимо и достаточно, чтобы однородное уравнение имело только нулевое решение.

При этом, оператор (A - I) будет непрерывно обратим.

Доказательство. Обозначим

$$N_k = N((A-I)^k)$$
, где $k \in \mathbb{N}$

Очевидно, что $\forall k$:

$$N_k \subseteq N_{k+1}$$

Необходимость. Пусть уравнение Ax - x = y разрешимо для $\forall y$. Будем доказывать от противного: предположим, что уравнение Ax - x = 0 имеет ненулевое решение.

Выберем одно такое решение: $x_1 \neq 0$. Введём последовательность $\{x_k\}$ по правилу:

$$x_{k+1}$$
 — решение уравнения $\underbrace{Ax-x=x_k}_{\mbox{разрешимо}}$ по условию

Имеем

$$(A - I)x_k = x_{k-1}$$
$$(A - I)^2 x_k = x_{k-2}$$
$$(A - I)^k x_k = (A - I)x_1 = 0$$

Получаем, что $x_k \in N_k$. Т.к. $x_1 \neq 0$, то x_2 —решение уравнения $Ax - x = x_1$, тоже не равно нулевому элементу. Следовательно $x_k \notin N_{k-1}$. Таким образом, получили строгое вложение N_k . По лемме Рисса о почти перпендикуляре 4.1 для $N_{k-1} \subset N_k$ получаем:

$$\exists z_k \in N_k \mid z_k \notin N_{k-1}, \ \|z_k\| = 1, \ \|z_k - x\| \geqslant \frac{1}{2} \ \forall x \in N_{k-1}$$

Т.к. оператор A вполне непрерывен, то из последовательности $\{Az_k\}$ можно извлечь сходящуюся подпоследовательность.

С другой стороны, рассмотрим z_k и z_{k+m} , при m>0

$$(A-I)^{k+m-1}(z_k - (A-I)z_{k+m} + (A-I)z_k) = \underbrace{(A-I)^{k+m-1}z_k}_{N_k \subseteq N_{k+m-1}} - \underbrace{(A-I)^{k+m}z_{k+m}}_{z_{k+m} \in N_{k+m}} + \underbrace{(A-I)^{k+m}z_k}_{N_k \subseteq N_{k+m}} = 0$$

Таким образом, получаем

$$z_k - (A - I)z_{k+m} + (A - I)z_k \in N_{k+m-1}$$

Рассмотрим

$$\|Az_{k+m} - Az_k\| = \|z_{k+m} - z_k + (A - I)z_{k+m} - (A - I)z_k\| =$$

$$= \|z_{k+m} - (\underbrace{z_k - (A - I)z_{k+m} + (A - I)z_k}_{\in N_{k+m-1}})\| \geqslant$$

$$\geqslant (\text{по опр. элементов } z_k) \geqslant \frac{1}{2}$$

Т.е. $\{Az_k\}$ не является фундаментальной, как и любая её подпоследовательность. Пришли к противоречию с вполне непрерывностью оператора A.

Достаточность. Пусть выполняется $Ax - x = 0 \Leftrightarrow x = 0$. Тогда по следствию 5.2 уравнение $A^*f - f = g$ разрешимо для $\forall g \in X^*$.

По теореме 5.3 оператор A^* является вполне непрерывным. Тогда из уже доказанной необходимости следует, что уравнение $A^*f-f=0$ имеет только нулевое решение. Тогда по теореме 5.6 уравнение Ax-x=y разрешимо $\forall y$.

Обратимость. Оператор (A-I) взаимно однозначен, следовательно, по теореме об обратном операторе (теорема 2.4) непрерывно обратим.

Теорема 5.9. Пусть X — банахово пространство, $A: X \to X$ — линейный, вполне непрерывный оператор.

Тогда однородные уравнения Ax - x = 0, $A^*f - f = 0$ имеют одинаковое число линейно независимых решений.

Доказательство. Имеем

$$N(A-I),\ N(A^*-I^*)-\ {
m coвокупности}\ {
m pешений}\ {
m однородных}\ {
m уравнений}$$

По теореме 5.5 они конечномерны \Rightarrow существуют базисы $x_1 \dots x_n$ и $f_1 \dots f_m$.

49

▶ Предположим, что n < m.

Построим для $x_1 \dots x_n$ биортосистему $\varphi_1 \dots \varphi_n \in X^* \, \big| \, \varphi_i(x_j) = \delta_i^j$. Аналогично для $f_1 \dots f_m$:

$$z_1 \dots z_m \in X \mid f_i(z_j) = \delta_i^j$$

Построим оператор U по правилу:

$$Ux = Ax + \sum_{i=1}^{n} \varphi_i(x)z_i$$

Согласно свойству 2 вполне непрерывных операторов, $\forall i \ \varphi_i$ является вполне непрерывным. Получаем, что U вполне непрерывен.

Необходимо доказать, что $Ux - x = 0 \Leftrightarrow x = 0$.

Пусть x_0 — решение, т.е. $Ux_0 - x_0 = 0$. Докажем, что $x_0 = 0$.

Рассмотрим

$$f_k(Ux_0 - x_0) = f_k(0) = 0$$

С другой стороны

$$f_k(Ux_0-x_0)=f_k\left(Ax_0-x_0+\sum_{i=1}^n\varphi_i(x_0)z_i\right)=$$

$$=f_k(Ax_0-x_0)+\sum_{i=0}^nf_k(z_i)\varphi_i(x_0)=(f,z-\text{биортогональны})=$$

$$=f_k(Ax_0-x_0)+\varphi_k(x_0)=(A^*f_k-f_k)(x_0)+\varphi_k(x_0)=$$

$$=(\text{т.к. }f_k\in N(A^*-I^*))=\varphi_k(x_0)$$

Таким образом

$$\varphi_k(x_0) = 0 \quad \forall k \in \{1 \dots n\}$$

Отсюда

$$Ux_0 - x_0 = Ax_0 - x_0 + \sum_{i=1}^n \underbrace{\varphi_i(x_0)}_{=0} z_i = Ax_0 - x_0 = 0 \Rightarrow$$

$$\Rightarrow x_0 \in N(A-I) \Rightarrow \text{разложим по базису:}$$

$$x_0 = \sum_{i=1}^n \alpha_i x_i$$

Имеем

$$\varphi_k(x_0) = \sum_{i=1}^n \alpha_i \varphi_k(z_i) = \alpha_k = 0 \quad \forall k \in \{1 \dots n\} \implies$$
$$\Rightarrow x_0 = \sum_{i=1}^n 0 \cdot x_i = 0$$

Таким образом, доказали, что $Ux - x = 0 \Leftrightarrow x = 0$. По теореме 5.8 уравнение Ux - x = y разрешимо $\forall y$. Выберем в качестве y элемент z_{n+1} , и обозначим через x' решение уравнения $Ux - x = z_{n+1}$.

Рассмотрим

$$f_{n+1}(z_{n+1}) = f_{n+1}(Ax' - x' + \sum_{i=1}^{n} \varphi_i(x')z_i =$$

$$= f_{n+1}(Ax' - x') + \sum_{i=1}^{n} \varphi_i(x')f_{n+1}(z_i) =$$

$$= (f, z - \text{биортогональны}) = f_{n+1}(Ax' - x') + 0 =$$

$$= (A^*f_{n+1} - f_{n+1})x' = (f_{n+1} \in N(A^* - I^*)) = 0$$

Но, с другой стороны

$$f_{n+1}(z_{n+1}) = 1$$

Пришли к противоречию. Следовательно, $n \ge m$.

▶ Предположим, что n > m. Введём оператор U^* :

$$U^*f = A^*f + \sum_{i=1}^m f(z_i)\varphi_i \in X^*$$

Тогда U^* вполне непрерывен.

Докажем, что $U^*f-f=0 \Leftrightarrow f=0$. Пусть f_0 — решение однородного уравнения $U^*f-f=0$.

Рассмотрим

$$(U^*f_0-f_0)x_k=(A^*f_0-f_0)x_k+\sum_{i=1}^m f_0(z_i)\varphi_i(x_k)=f_0(Ax_k-x_k)+\\ +\sum_{i=1}^m f_0(z_i)\varphi_i(x_k)=(x_k\in N(A-I))=0+\sum_{i=1}^m f_0(z_i)\varphi_i(x_k)=\\ =(\varphi,x-\text{биортогональны})=f_0(z_k)\quad\forall k\in\{1\dots m\}$$

Получаем

$$f_0(z_k) = (U^* f_0 - f_0) x_k = 0 \quad \forall k \in \{1 \dots m\}$$

Тогда

$$U^*f_0-f_0=A^*f_0-f_0+\sum_{i=1}^m f_0(z_i)\varphi_i=0\Rightarrow$$
 $\Rightarrow A^*f_0-f_0=0\Rightarrow f_0\in N(A^*-I^*)\Rightarrow$ \Rightarrow можно разложить по базису: $f_0=\sum_{j=1}^m \beta_j f_j$

Рассмотрим

$$f_0(z_k) = 0 = \sum_{j=1}^m \beta_j f_j(z_k) = \beta_k \implies f_0 = \sum_{j=1}^m 0 \cdot f_j = 0$$

Т.е. уравнение $U^*f=f=0$ имеет только нулевое решение. Тогда по теореме 5.8 уравнение $U^*f-f=g$ разрешимо $\forall g\in X^*.$

Выберем в качестве g элемент φ_{m+1} , и обозначим через f' решение уравнения $U^*f - f = \varphi_{m+1}$. Тогда

$$\varphi_{m+1}(x_{m+1}) = 1 = (U^*f' - f')x_{m+1} = (A^*f' - f' + \sum_{i=1}^m f'(z_i)\varphi_i(x_{m+1}) =$$

$$= (A^*f' - f')x_{m+1} + \sum_{i=1}^m f'(z_i)\varphi_i(x_{m+1}) = (\varphi, x - \text{биортогональны}) =$$

$$= f'(Ax_{m+1} - x_{m+1}) + 0 = (x_{m+1} \in N(A - I)) = f'(0) = 0$$

Пришли к противоречию, следовательно, $n \ge m$.

Таким образом, получаем, что n=m. Т.е. однородные уравнения Ax-x=0 и $A^*f-f=0$ имеют одинаковое число линейно независимых решений.

Теорема 5.10. Пусть X — банахово пространство, $A: X \to X$ — линейный, вполне непрерывный оператор.

Тогда для того, чтобы уравнение Ax-x=y было разрешимо для данного y необходимо и достаточно, чтобы для любого $f\in X^*$ такого, что $A^*f-f=0$ выполнялось

$$f(y) = 0$$

Доказательство. **1** случай. Пусть N(A-I) содержит <u>только</u> нулевой элемент. Тогда по теореме 5.8 уравнение Ax - x = y разрешимо для любого y. Следовательно, по теореме 5.6 уравнение $A^*f - f = 0$ имеет только нулевое решение f, т.е. $f(y) = 0 \ \forall y$.

___(Лекция №10, 08.11.2010)

2 случай. Пусть $N(A-I) \neq \{0\}$

 (\Rightarrow) Пусть Ax-x=y разрешимо для y, x_0 — решение этого уравнения. И пусть $f\in N(A^*-I^*)$, т.е. $A^*f-f=0$ Имеем:

$$f(y) = f(Ax_0 - x_0) = (A^*f - f)x_0 = 0$$

 (\Leftarrow) Пусть для данного $y \in X$ выполняется

$$f(y) = 0 \quad \forall f \in N(A^* - I^*)$$

Докажем от противного. Пусть уравнение Ax - x = y неразрешимо. С другой стороны, по теореме $5.4\ L = R(A-I)$ замкнуто, следовательно, L — подпространство X.

По следствию 3.1 теоремы Хана-Банаха

$$\exists f_0 \in X^* \mid f_0(y) = 1; \ f_0(Ax - x) = 0$$

Имеем:

$$f_0(Ax - x) = (A^*f_0 - f_0)(x) = 0 \Rightarrow$$

 $\Rightarrow f_0 \in N(A^* - I^*) \Rightarrow$ по условию
 $\Rightarrow f_0(y) = 0$

Но по построению $f_0(y) = 1$, пришли к противоречию.

Теорема 5.11 (**Альтернатива Фредгольма**). Пусть X — банахово пространство, $A: X \to X$ — линейный, вполне непрерывный оператор.

Тогда уравнения Ax - x = y, $A^*f - f = g$ либо одновременно разрешимы для $\forall y, g$, и, при этом, однородные уравнения Ax - x = 0 и $A^*f - f = 0$ имеют лишь нулевые решения, либо однородные уравнения имеют одинаковое число линейно независимых решений, и в этом случае для того, чтобы уравнение Ax - x = y или уравнение $A^*f - f = g$ имело решение для данного y или g, необходимо и достаточно, чтобы

$$f(y) = 0 \quad \forall f \in N(A^* - I^*)$$

или же

$$g(x) = 0 \quad \forall x \in N(A - I)$$

Упр 5.2. Доказать теорему *5.11*

5.2.1 Уравнение Фредгольма первого рода

 $A: X \to Y$ — линейный, вполне непрерывный оператор.

Теорема 5.12. Пусть X,Y — бесконечномерные нормированные пространства, Y — банахово. Тогда R(A) не является замкнутым множеством.

Доказательство. Докажем от противного. Пусть R(A) замкнуто, следовательно, R(A) — подпространство в Y, значит R(A) — банахово.

Представим X в виде

$$X = \bigcup_{n=1}^{\infty} B_n(0)$$

Докажем, что

$$R(A) = \bigcup_{n=1}^{\infty} A(B_n(0))$$
 — бесконечномерное многообразие

Имеем

$$R(A) = A(X) = A\left(\bigcup_{i=1}^{\infty} B_i(0)\right) = A\left(\lim_{n \to \infty} \bigcup_{i=1}^{n} B_i(0)\right) = (A$$
 непрерывен $) = \lim_{n \to \infty} A\left(\bigcup_{i=1}^{n} B_i(0)\right) = \lim_{n \to \infty} \bigcup_{i=1}^{n} A(B_i(0)) = \bigcup_{i=1}^{\infty} A(B_i(0))$

Оператор A вполне непрерывен, следовательно, $A(B_i(0))$ относительно компактно.

По утверждению 4.5 любое относительно компактное множество бесконечномерного пространства нигде не плотно (А R(A) — бесконечномерно). То есть, R(A) представляется как счетное объединение нигде не плотных множеств, следовательно, R(A) — пространство первой категории, что противоречит теореме 1.4

Теорема 5.13. Пусть $A:X\to Y$ — линейный, вполне непрерывный оператор. X — бесконечномерное нормированное пространство, Y — нормированное пространство, и пусть оператор A обратим, т.е. существует $A^{-1}:R(A)\to X$

Тогда A^{-1} неограничен.

Доказательство. Докажем от противного. Пусть A^{-1} ограничен.

С одной стороны, $A^{-1}A = I$ — единичный оператор пространства X не является вполне непрерывным, т.к. X бесконечномерно.

Но с другой стороны, оператор $A^{-1}A$ вполне непрерывен по 3 свойству вполне непрерывных операторов (т.к. A вполне непрерывен, а A^{-1} непрерывен). Пришли к противоречию.

Следствие 5.3. Пусть X — бесконечномерное банахово пространство, $A: X \to X$ — линейный, вполне непрерывный оператор.

Тогда обязательно найдется $y \in X$ такой, что уравнение Ax = y не имеет решений.

Доказательство. Докажем от противного. Пусть уравнение Ax = y разрешимо $\forall y$. Значит, существует A^{-1} . По теореме 2.4 A^{-1} ограничен, что противоречит теореме 5.13.

5.3 Метод малого параметра

Вспомним замечание 2.2:

В пространстве линейных, ограниченных операторов множество непрерывно обратимых операторов — открытое множество. То есть, если $\exists A^{-1}$ и B — ограничен, то $A + \lambda B$ — обратим при малых λ .

5.3.1 Аналитический подход

Пусть X, Y — нормированные пространства. Пусть задано семейство

$$A(\lambda) \in \mathcal{L}(X,Y)$$

 $\lambda \in (-R_0,R_0)$

и семейство правых частей: $\{y(\lambda)\}$.

Рассмотрим уравнение

$$A(\lambda)x = y(\lambda)$$

Пусть семейства $A(\lambda)$ и $y(\lambda)$ — аналитичны по λ (т.е. разложимы в сходящийся ряд Тейлора):

$$A(\lambda) = \sum_{k=0}^{\infty} A_k \lambda^k$$
$$y(\lambda) = \sum_{k=0}^{\infty} y_k \lambda^k$$
$$A_k \in \mathcal{L}(X, Y); \ y_k \in Y$$

Под сходимостью ряда $\sum_{k=0}^{\infty} A_k \lambda^k$ понимается сходимость числового ряда

$$\sum_{k=0}^{\infty} ||A_k|| \cdot |\lambda|^k < \infty, \quad \forall \lambda \in (-R_1, R_1)$$

Аналогично для $y(\lambda)$:

$$\sum_{k=0}^{\infty} ||y_k|| |\lambda|^k < \infty, \ \forall \lambda \in (-R_2, R_2)$$

Рассмотрим

$$||[A(\lambda) - A(0)]A^{-1}(0)|| \le ||A(\lambda) - A(0)|| \cdot \underbrace{||A^{-1}(0)||}_{\text{ЧИСЛО}}$$

В силу непрерывности $A(\lambda)$ по λ , выражение $||A(\lambda) - A(0)||$ мы можем сделать сколь угодно малым, тогда

$$\exists \rho_0 > 0 \mid \forall \lambda, |\lambda| < \rho_0 : ||[A(\lambda) - A(0)]A^{-1}(0)|| < 1$$

Здесь мы предполагаем, что $\exists A^{-1}(0)$, т.е. уравнение A(0)x = y(0) разрешимо.

Представим $A(\lambda)$ в виде

$$A(\lambda) = (I + [A(\lambda) - A(0)]A^{-1}(0)) A(0)$$

Рассмотрим такие λ , что $|\lambda| < \rho_0$. Тогда оператор $(I + [A(\lambda) - A(0)]A^{-1}(0))$ непрерывно обратим по теореме 2.2, а оператор A(0) непрерывно обратим по условию, следовательно, $A(\lambda)$ непрерывно обратим. Таким образом, уравнение $A(\lambda)x = y(\lambda)$ разрешимо при $|\lambda| < \rho_0$.

Поиск решения $x(\lambda)$

Будем искать аналитически

$$x = \sum_{k=0}^{\infty} x_k \lambda^k$$

т.е. нужно найти x_k Имеем

$$\left(\sum_{k=0}^{\infty} A_k \lambda^k\right) x = \left(\sum_{k=0}^{\infty} A_k \lambda^k\right) \cdot \left(\sum_{k=0}^{\infty} x_k \lambda^k\right) = \sum_{k=0}^{\infty} y_k \lambda^k$$

Пусть λ =0. Тогда:

$$A_0 x_0 = y_0$$
, где A_0 — обратим $\Rightarrow x_0 = A_0^{-1} y$ — найдено

Остальные находим последовательным приравниванием коэффициентов при одинаковых степенях:

$$A_0x_1 + A_1x_0 = y_1 \Rightarrow x_1 = A_0^{-1}(y_1 - A_1x_0)$$
...
$$\sum_{k=0}^{n} A_k x_{n-k} = y_n$$

5.3.2 Метод продолжения по параметру

Теорема 5.14. Пусть X, Y — банаховы пространства, и пусть задано семейство непрерывных по λ операторов $\{A(\lambda)\}_{\lambda \in [0,1]}, A(\lambda) : X \to Y$. Пусть A(0) непрерывно обратим, и пусть

$$\forall x \in X \ \forall \lambda \in [0,1]: \ \|A(\lambda)x\| \geqslant \gamma \|x\|, \ \gamma > 0$$

Тогда A(1) непрерывно обратим.

Замечание 5.2. Более того, справедлива оценка:

$$||A^{-1}(1)|| \leqslant \frac{1}{\gamma}$$

Доказательство. Докажем методом топологической индукции, основанной на следуещем принципе:

 $\Pi y cm b \ E \subseteq [0,1] \ u \ cnpa в e дливо$

- 1) $E \neq \emptyset$
- **2)** E замкнуто в [0,1]
- 3) $E om \kappa p u m o \ e \ [0,1]$

 $Tor \partial a E = [0,1].$

Обозначим $\Lambda = \{\lambda \mid \lambda \in [0,1], A(\lambda) \text{ непрерывно обратим}\}$

- **1)** Λ не пусто, т.к. $0 \in \Lambda$ по условию.
- **3)** Докажем открытость Λ , т.е.

$$\lambda_0 \in \Lambda \Rightarrow \lambda_0 + \widetilde{\lambda} \in \Lambda$$
 при малых $|\widetilde{\lambda}|$

Т.к. $\lambda_0 \in \Lambda$, значит, $A(\lambda_0)$ непрерывно обратим. Получаем:

$$||A(\lambda_0)x|| \geqslant \gamma ||x|| \text{ (по условию)} \Rightarrow$$

$$\Rightarrow ||y|| \geqslant \gamma ||A^{-1}(\lambda_0)y|| \Rightarrow$$

$$\Rightarrow ||A^{-1}(\lambda_0)y|| \leqslant \frac{1}{\gamma} ||y|| \Rightarrow$$

$$\Rightarrow ||A^{-1}(\lambda_0)|| \leqslant \frac{1}{\gamma}$$

Отсюда:

$$\|[A(\lambda) - A(\lambda_0)]A^{-1}(\lambda_0)\| \le \|A(\lambda) - A(\lambda_0)\| \cdot \|A^{-1}(\lambda_0)\| \le \frac{1}{\gamma} \|A(\lambda) - A(\lambda_0)\|$$

Семейство $A(\lambda)$ непрерывно в операторной норме, т.е.

$$\forall \varepsilon > 0 \,\exists \delta = \delta(\varepsilon) > 0 \, \big| \, (|\lambda - \lambda_0| < \delta) \Rightarrow ||A(\lambda) - A(\lambda_0)|| < \varepsilon$$

Возьмем такое ε , что $\varepsilon < \gamma$. Тогда:

$$\left\| \left[A(\lambda) - A(\lambda_0) \right] A^{-1}(\lambda_0) \right\| < 1$$

Представим $A(\lambda)$ в виде:

$$A(\lambda) = \left(I + [A(\lambda) - A(\lambda_0)]A^{-1}(\lambda_0)\right)A(\lambda_0)$$

Имеем:

$$\|[A(\lambda) - A(\lambda_0)]A^{-1}(\lambda_0)\| < 1 \Rightarrow$$
 по теореме 2.2 $\Rightarrow (I + [A(\lambda) - A(\lambda_0)]A^{-1}(\lambda_0))$ непрерывно обратим

Оператор $A(\lambda_0)$ непрерывно обратим по условию, значит, $A(\lambda)$ непрерывно обратим при $|\lambda - \lambda_0| < \delta$ как суперпозиция непрерывно обратимых. Открытость доказана.

2) Докажем замкнутость Λ , т.е. необходимо доказать

$$\lambda_n \in \Lambda, \lambda_n \xrightarrow[n \to \infty]{} \lambda_0 \Rightarrow \lambda_0 \in \Lambda$$

Т.к. $\lambda_n \in \Lambda$, то $A(\lambda_n)$ непрерывно обратим. Проведя рассуждения как в пункте **3** получим:

$$||A^{-1}(\lambda_n)|| \leqslant \frac{1}{\gamma}$$

Тогда из того, что $\lambda_n \xrightarrow[n \to \infty]{} \lambda_0$ и $A(\lambda)$ непрерывен по λ получаем:

$$\|[A(\lambda_0) - A(\lambda_n)]A^{-1}(\lambda_n)\| \leqslant$$
 $\leqslant \|A(\lambda_0) - A(\lambda_n)\| \cdot \|A^{-1}(\lambda_n)\| < 1$ (при больших n)

Представим $A(\lambda_0)$ в виде:

$$A(\lambda_0) = [I + [A(\lambda_0) - A(\lambda_n)]A^{-1}(\lambda_n)]A(\lambda_n)$$

Аналогично пункту **3** получаем, что $A(\lambda_0)$ — непрерывно обратимый оператор, следовательно, $\lambda_0 \in \Lambda$.

В силу топологической индукции $\Lambda = [0, 1]$.

3амечание 5.3. Оценка $\|A^{-1}(1)\| \leqslant \frac{1}{\gamma}$ получается из доказанной оценки $\|A^{-1}(\lambda_0)\| \leqslant \frac{1}{\gamma}$ при $\lambda_0=1$

_____(Лекция №11, 15.11.2010)

Следствие 5.4. Пусть X,Y — банаховы пространства, и пусть задано семейство непрерывных по λ операторов $\{A(\lambda)\}_{\lambda\in[0,1]},\ A(\lambda):X\to Y.$ Пусть для всевозможных решений уравнений $A(\lambda)x=y$ выполняется оценка

$$||x|| \leqslant K||y||,$$

и пусть существует $A^{-1}(0)$.

Тогда $\forall \lambda \in [0,1]$ существует $A^{-1}(\lambda)$.

Доказательство.

$$\|A(\lambda)x\|\geqslant \gamma\|x\|$$
эквивалентно $\|x\|\leqslant K\|y\|;\ A(\lambda)x=y$

По теореме 5.14 получаем требуемое.

5.4 Теорема Шаудера и следствия из нее

Опр 5.6. Оператор A называется вполне непрерывным на множестве D, если он непрерывен на D и любое ограниченное подмножество D он переводит в относительно компактное множество.

Теорема 5.15 (Шаудера). Пусть X — банахово пространство. Оператор A отображает замкнутое, ограниченное, выпуклое множество $D \subset X$ в себя, A вполне непрерывен на D.

Тогда оператор A имеет в D хотя бы одну неподвижную точку:

$$Ax = x$$

Без доказательства.

Теорема 5.16. Пусть X — банахово пространство. Если непрерывный оператор A переводит замкнутое, выпуклое множество $D \subset X$ в своё относительно компактное подмножество D_0 , то оператор A имеет неподвижную точку.

Доказательство.

Упр 5.3. Доказать, что множество D_0 ограничено (воспользоваться теоремой Хаусдорфа 4.3).

Тогда

$$\exists R \mid \overline{B_R}(0) \supset D_0$$

Обозначим

$$D_1 = \overline{B_R}(0) \cap D$$

Множество D_1 ограничено, замкнуто (как пересечение замкнутых) и выпукло (как пересечение выпуклых). Имеем:

 $A:D_1\to D_1\Rightarrow \;$ по теореме 5.15 A имеет на D_1 неподвижную точку

 $D_1 \subset D \Rightarrow$ на всём D оператор A имеет неподвижную точку.

Теорема 5.17. Пусть X — банахово пространство и пусть задан оператор $A:\overline{B_R}(0)\to X$, вполне непрерывный на $\overline{B_R}(0)$. Если $\forall \lambda>1$ и $\forall x\in S_R(0)$ выполняется

$$Ax \neq \lambda x$$
,

то оператор A имеет на $\overline{B_R}(0)$ неподвижную точку.

Доказательство. Определим

$$F(x) = \begin{cases} Ax, & \text{если } ||Ax|| \leqslant R \\ \frac{RAx}{||Ax||}, & \text{иначе} \end{cases}$$

Очевидно, что

$$F: \overline{B_R}(0) \to \overline{B_R}(0)$$

Упр 5.4. Доказать, что F — вполне непрерывен на $\overline{B_R}(0)$ (использовать вполне непрерывность операторов $A, \|\cdot\|$).

Отсюда, по теореме 5.15

$$\exists x_0 \mid F(x_0) = x_0, \ ||x_0|| \leqslant R$$

Возможны два случая:

а) $F(x_0) = Ax_0 \Rightarrow x_0$ — неподвижная точка A.

b) $F(x_0) = \frac{RAx_0}{\|Ax_0\|}$. Покажем, что это невозможно.

Имеем:

$$\|Ax_0\| > R$$
 $Ax_0 = \frac{\|Ax_0\|}{R} F(x_0) = \frac{\|Ax_0\|}{R} x_0 = \lambda x_0$, где $\lambda > 1$ $\|x_0\| = \|F(x_0)\| = \left\|\frac{RAx_0}{\|Ax_0\|}\right\| = R$

Т.е. нашлись такие $x \in S_R(0)$ и $\lambda > 1$, что $Ax = \lambda x$. Пришли к противоречию с условием.

Теорема 5.18. Пусть X — банахово пространство и пусть задан вполне непрерывный оператор $A: \overline{B_R}(0) \to X$.

Если $\forall x, \|x\| = R$ выполняется $\|Ax\| \leq \|x\|$, то оператор A имеет в $\overline{B_R}(0)$ хотя бы одну неподвижную точку.

Доказательство. Выполняется один из двух случаев:

- a) $\exists x_0 \mid Ax_0 = x_0, ||x_0|| = R.$
- **b)** $Ax \neq x \ \forall x, ||x|| = R.$

Из а следует существование неподвижной точки.

Рассмотрим случай b. Покажем, что выполняются условия предыдущей теоремы:

$$Ax \neq \lambda x, \ \lambda > 1, \ \|x\| = R$$

Докажем от противного — пусть это не так, т.е.

$$\exists \lambda_0, \ x_0 \mid Ax_0 = \lambda_0 x_0, \ \lambda_0 > 1, \ ||x_0|| = R \Rightarrow$$

 $\Rightarrow ||Ax_0|| = \lambda_0 ||x_0||$

Но по условию $||x_0|| \ge ||Ax_0||$. Пришли к противоречию. По предыдущей теореме получаем существование неподвижной точки.

Теорема 5.19 (**Лерэ-Шаудера**). Пусть X — банахово пространство, $A: X \to X$ — вполне непрерывный оператор. Пусть для всех x таких, что $x = \lambda Ax$, $\lambda \in [0, 1]$, выполняется априорная оценка:

$$||x|| \leqslant K$$
.

Тогда уравнение x = Ax разрешимо.

Доказательство. Зафиксируем число R > K.

Оператор A вполне непрерывен на $X \Rightarrow A$ вполне непрерывен на $\overline{B_R}(0)$. Предположим, что не выполняется

$$Ax \neq \lambda x, \ \lambda > 1, \ \|x\| = R$$

т.е.

$$\exists x_0, \mu_0 \mid ||x_0|| = R, \ \mu_0 > 1, \ Ax_0 = \mu_0 x_0$$

Получаем

$$x_0 = \frac{1}{\mu_0} A x_0, \quad \frac{1}{\mu_0} \in (0, 1)$$

Из условий теоремы получаем, что

$$||x_0|| \leqslant K$$

С другой стороны

$$||x_0|| = R > K$$

Пришли к противоречию. По теореме 5.17 получаем требуемое.

Рассмотрим уравнение x - Ax = y.

Теорема 5.20. Пусть X — банахово пространство, $A: X \to X$ — вполне непрерывный оператор. И пусть выполняется

$$\lim_{\|x\|\to\infty}\frac{\|Ax\|}{\|x\|}=q<1$$

Тогда $\forall y \in X$ уравнение x - Ax = y разрешимо.

Доказательство. Введём

$$\widetilde{A}x = Ax + y$$

Это сдвиг на постоянный вектор y, следовательно, оператор \widetilde{A} так же является вполне непрерывным.

Имеем:

$$\|\widetilde{A}x\| \le \|Ax\| + \|y\| = (\|x\| \ne 0) = \|x\| \left(\frac{\|Ax\|}{\|x\|} + \frac{\|y\|}{\|x\|}\right)$$

Пусть $||x|| \to R$. Тогда:

$$\forall \varepsilon > 0 \; \exists R > 0 \; | \; \frac{\|Ax\|}{\|x\|} < q + \varepsilon$$

Увеличиваем R до тех пор, пока не получим:

$$\|\widetilde{A}x\| < \|x\|(q + \varepsilon + \underbrace{\varepsilon_1}_{\substack{\text{O Q.} \\ \text{MaJIO}}}) \leqslant 1 \cdot \|x\|$$
$$\Rightarrow \|\widetilde{A}x\| \leqslant \|x\|; \ \|x\| = R$$

Тогда для \widetilde{A} справедлива теорема 5.18, следовательно, существует неподвижная точка $x_0 \mid \widetilde{A}x_0 = x_0 \Rightarrow Ax_0 + y = x_0$

6 Самосопряжённые операторы. Спектр и резольвента.

Рассматриваем пространства над \mathbb{C} . Пусть $A: H \to H$, где $H = H(\mathbb{C})$.

Опр 6.1. Оператор А называется самосопряжённым, если

$$(Ax, y) = (x, Ay)$$

Лемма 6.1. Пусть H-гильбертово пространство, $A:H\to H-$ линейный, самосопряжённый оператор. Тогда

$$||A|| = \sup_{||x||=1} |(Ax, x)|$$

Доказательство. С одной стороны, имеет место

$$||Ax|| \le ||A|| \cdot ||x||;$$

 $|(Ax, x)| \le ||Ax|| \cdot ||x|| \le ||A|| \cdot ||x||^2;$
 $\Rightarrow \sup_{\|x\|=1} |(Ax, x)| \le ||A||$

С другой стороны, известно, что (Ax, x) для самосопряжённого оператора A есть всегда действительное число. Пусть $y \in H, y \neq \theta$. Тогда

$$(Ay, y) = ||y||^2 \left(A \frac{y}{||y||}, \frac{y}{||y||} \right)$$
$$|(Ay, y)| = ||y||^2 \cdot \left| \left(A \frac{y}{||y||}, \frac{y}{||y||} \right) \right| \leqslant ||y||^2 \sup_{||x||=1} |(Ax, x)|$$

Получаем, что $\forall y \in H$

$$|(Ay, y)| \le ||y||^2 \sup_{||x||=1} |(Ax, x)|$$
 (*)

Пусть $z \in H$, $z \neq \theta$.

Определим

$$\lambda = \sqrt{\frac{\|Az\|}{\|z\|}}; \quad u = \frac{1}{\lambda} \cdot Az$$

Имеем

$$\begin{split} \|Az\|^2 &= |(Az,Az)| = |(Az,\lambda u)| = |\lambda(Az,u)| = |(\lambda Az,u)| = \\ &= |(A(\lambda z),u)| = \left|\frac{1}{4}\left[(A(\lambda z + u),\lambda z + u) - (A(\lambda z - u),\lambda z - u)\right]\right| \leqslant \\ &\leqslant (\text{в силу }(\star)) \leqslant \frac{1}{4}\sup_{\|x\|=1}|(Ax,x)|\left[\|\lambda z + u\|^2 + \|\lambda z - u\|^2\right] = \\ &= \frac{1}{4}\sup_{\|x\|=1}|(Ax,x)|\left[(\lambda z + u,\lambda z + u) + (\lambda z - u,\lambda z - u)\right] = \\ &= \frac{1}{2}\sup_{\|x\|=1}|(Ax,x)|\left[\lambda^2\|z\|^2 + \|u\|^2\right] = \\ &= \frac{1}{2}\sup_{\|x\|=1}|(Ax,x)|\left[\lambda^2\|z\|^2 + \frac{1}{\lambda^2}\|Az\|^2\right] = \\ &= \left(\lambda = \sqrt{\frac{\|Az\|}{\|z\|}}\right) = \frac{1}{2}\sup_{\|x\|=1}|(Ax,x)|\left[\frac{\|Az\|}{\|z\|}\|z\|^2 + \|Az\|^2\frac{\|z\|}{\|Az\|}\right] = \\ &= \sup_{\|x\|=1}|(Ax,x)| \cdot \|z\| \cdot \|Az\| \end{split}$$

Получаем

$$||Az||^2 \le ||z|| \cdot ||Az|| \cdot \sup_{||x||=1} |(Ax, x)|;$$

Далее

$$||Az|| \le ||z|| \cdot \sup_{||x||=1} |(Ax, x)| = K||z||$$

 $\Rightarrow ||A|| = \inf\{K\} \le K = \sup_{||x||=1} |(Ax, x)|$

Таким образом, получаем

$$||A|| \leqslant \sup_{\|x\|=1} |(Ax, x)|$$
 u $||A|| \geqslant \sup_{\|x\|=1} |(Ax, x)|$ $\Rightarrow ||A|| = \sup_{\|x\|=1} |(Ax, x)|$

Следствие 6.1. Пусть $A: H \to H$ —линейный, самосопряжённый оператор. Пусть $\forall x \in H: (Ax, x) = 0$. Тогда A—нулевой оператор.

Доказательство. Очевидно.

Опр 6.2. Пусть $L \subset H$ — подпространство, причем $\forall x \in H$ существует разложение x = y + z, где $y \in L$, $z \in L^{\perp}$.

Проектор $P: H \to L$ определяется по следующему правилу

$$Px = u$$

Утв 6.1. Свойства проекторов:

- 1) Для любого проектора P выполняется: ||P|| = 1
- **2)** Любой проектор P является самосопряжённым оператором.

Доказательство.

$$(Px,u) = (P(y+z),u) = (y,u) =$$

$$\Big(u = v + w, \text{ где } v \in L, w \in L^{\perp}\Big)$$

$$= (y,v) + (y,w) = (y,v)$$
 $(x,Pu) = (x,P(v+w)) = (x,v) = (y+z,v) = (y,v)$

3) $\forall P: P^2 = P$

4) $0 \le (Px, x) \le ||x||^2$

5) Пусть P—линейный, самосопряжённый оператор, определенный на $H,\ P=P^2.$ Тогда P—проектор.

Указание 6.1. Для доказательства использовать факт, что

$$R(P) = N(I - P)$$

- **Опр 6.3.** Проекторы P_1 и P_2 называются ортогональными, если P_1P_2 нулевой оператор.
- 6) Пусть P_1 и P_2 проекторы на подпространствах L_1 и L_2 соответственно. L_1 и L_2 будут ортогональны $\Leftrightarrow P_1$ и P_2 ортогональны.

Доказательство. (\Leftarrow) $x_1 \in L_1; x_2 \in L_2$ Рассмотрим

$$(x_1, x_2) = (P_1x_1, P_2x_2) = (x_1, P_1P_2x_2) = 0$$

 (\Rightarrow) Пусть $L_1 \perp L_2$, и пусть $x \in H$, тогда

$$P_1x \in L_1; P_2x \in L_2 \Rightarrow (P_1x, P_2x) = 0 \Rightarrow$$

 $\Rightarrow \forall x \in H: (x, P_1P_2x) = 0$

По следствию $6.1 P_1 P_2$ — нулевой оператор.

_(Лекция №12, 22.11.2010)

Пусть P_1 и P_2 — проекторы, тогда справедливы следующие утверждения:

Утв 6.2. $P_1 - P_2 - \text{проектор} \Leftrightarrow P_1 P_2 = P_2$

Утв 6.3. $P_1 + P_2$ — проектор $\Leftrightarrow P_1 \perp P_2$

Утв 6.4. P_1P_2 — проектор $\Leftrightarrow P_1P_2 = P_2P_1$

- **Опр 6.4.** Самосопряжённый оператор $A: H \to H$ называется положительным, если $\forall x \in H: (Ax, x) \geqslant 0$ и при этом $\exists x_0 \mid (Ax_0, x_0) > 0$. Обозначение: A > 0 положительный оператор.
- **Опр 6.5.** Самосопряжённый оператор $A: H \to H$ называется неотрицательным, если $\forall x \in H: (Ax, x) \geqslant 0$.

Обозначение: $A \geqslant 0$ — неотрицательный оператор.

Omp 6.6. $A \geqslant B \Leftrightarrow A - B \geqslant 0$

Свойства:

1) $A \geqslant B, B \geqslant C \Rightarrow A \geqslant C$

2)
$$A \geqslant B, C \geqslant D \Rightarrow A + C \geqslant B + D$$

3) $A \geqslant 0$ и $\exists A^{-1} \Rightarrow A^{-1} \geqslant 0$

4) Пусть $A: H \to H$ — произвольный линейный оператор. Тогда $AA^* \geqslant 0$ и $A^*A \geqslant 0$.

Теорема 6.1. Пусть H- гильбертово пространство; $A:H\to H$, $B:H\to H$, $A\geqslant 0$, $B\geqslant 0$, и пусть A,B- самосопряжённые и коммутативные (AB=BA) операторы. Тогда $AB\geqslant 0$

Доказательство. Рассмотрим

$$A_1 = \frac{A}{\|A\|}$$
; $A_2 = A_1 - A_1^2$; $A_3 = A_2 - A_2^2$; ...

Покажем, что $\forall n$ выполняется:

$$0 \leqslant A_n \leqslant I$$

Докажем методом математической индукции. База индукции: n=1

$$0 \leqslant A_1; - \text{ очевидно}$$

$$\left(x - \frac{Ax}{\|A\|}, x\right) = (x, x) - \frac{1}{\|A\|} (Ax, x) = \|x\|^2 - \frac{(Ax, x)}{\sup\limits_{\|x\|=1} |(Ax, x)|} =$$

$$= \|x\|^2 - \frac{\|x\|^2 \left(A\frac{x}{\|x\|}, \frac{x}{\|x\|}\right)}{\sup\limits_{\|x\|=1} |(Ax, x)|} = \|x\|^2 \left(1 - \frac{\left(A\frac{x}{\|x\|}, \frac{x}{\|x\|}\right)}{\sup\limits_{\|x\|=1} |(Ax, x)|}\right) \geqslant 0; \quad \Rightarrow$$

$$\Rightarrow I - A_1 \geqslant 0$$

Предположим, что для n = m верно

$$0 \leqslant A_m \leqslant I$$

Докажем для n = m + 1. Рассмотрим

$$(A_m^2(I - A_m)x, x) = (A_m(I - A_m)x, A_m x) = ((I - A_m)A_m x, A_m x) =$$

= $((I - A_m)y, y) \ge 0$

Следовательно

$$A_m^2(I - A_m) \geqslant 0$$

Аналогично

$$A_m(I - A_m)^2 \geqslant 0$$

Покажем, что

$$A_{m+1} = A_m^2 (I - A_m) + A_m (I - A_m)^2$$

Очевидно, что операторы I и A_m коммутативны. Раскроем скобки:

$$A_m^2(I - A_m) + A_m(I - 2A_m + A_m^2) = A_m - A_m^2 = A_{m+1}$$

Отсюда получаем, что $A_{m+1} \geqslant 0$. Имеет место

$$I - A_{m+1} = \underbrace{I - A_m}_{\geqslant 0} + \underbrace{A_m^2}_{\geqslant 0} \geqslant 0 \Rightarrow I \geqslant A_{m+1}$$

В итоге получаем

$$0 \leqslant A_{m+1} \leqslant I$$

Имеем:

$$A_1 = A_1^2 + A_2 = A_1^2 + A_2^2 + A_3 = \dots = \sum_{i=1}^n A_i^2 + A_{n+1}$$

Таким образом

$$\sum_{k=1}^{n} A_k^2 = A_1 - A_{n+1} \leqslant A_1 \quad (\star)$$

$$\sum_{k=1}^{n} (A_k x, A_k x) \leqslant (A_1 x, x)$$

$$\sum_{k=1}^{n} \|A_k x\|^2 \leqslant (A_1 x, x) - \text{число}$$

$$\Rightarrow \sum_{k=1}^{\infty} \|A_k x\|^2 < +\infty \quad \text{т.е. сходится}$$

$$\Rightarrow A_k x \xrightarrow[k \to \infty]{} 0$$
 из $(\star) \Rightarrow \left(\sum_{k=1}^{n} A_k^2\right) x = A_1 x - A_{n+1} x \xrightarrow[n \to \infty]{} A_1 x$

В силу свойства AB=BA, оператор B коммутирует с A_k $\forall k.$ Рассмотрим

$$(ABx,x) = \|A\|(BA_1x,x) = \|A\| \left(B\left(\lim_{n\to\infty}\sum_{k=1}^n A_k^2\right)x,x\right) =$$

$$= ((\cdot,\cdot) - \text{непр. } \Phi\text{-ция}) = \|A\| \lim_{n\to\infty} \left(B\sum_{k=1}^n A_k^2x,x\right) =$$

$$= \|A\| \lim_{n\to\infty} \left(\sum_{k=1}^n BA_k^2x,x\right) = \|A\| \lim_{n\to\infty} \left(\sum_{k=1}^n A_kBA_kx,x\right) =$$

$$= \|A\| \lim_{n\to\infty}\sum_{k=1}^n (A_kBA_kx,x) = (A_k - \text{самосопр.}) =$$

$$= \|A\| \lim_{n\to\infty}\sum_{k=1}^n (BA_kx,A_kx) = (y = A_kx) = \|A\| \lim_{n\to\infty}\sum_{k=1}^n (By,y) \geqslant 0$$

Лемма 6.2. Пусть $\{A_n\}$ — последовательность самосопряжённых, попарно перестановочных операторов $|A_n \leqslant A_{n+1}$. Если $\{A_n\}$ ограничена сверху некоторым самосопряжённым оператором B, перестановочным с каждым A_n , то последовательность $\{A_n\}$ имеет предел A, причём $A \leqslant B$.

Доказательство. Определим

$$C_n = B - A_n \geqslant 0$$

Очевидно, что C_n — самосопряжённый и неотрицательный оператор, а последовательность $\{C_n\}$ монотонно убывает.

Пусть $m, n \in \mathbb{N} \mid m < n$. Рассмотрим

$$\underbrace{(C_m - C_n)}_{\geqslant 0} \underbrace{C_m}_{\geqslant 0} \text{ if } \underbrace{C_n}_{\geqslant 0} \underbrace{(C_m - C_n)}_{\geqslant 0}$$

Следовательно, по теореме 6.1

$$(C_m - C_n)C_m \geqslant 0$$
 и $C_n(C_m - C_n) \geqslant 0$

Имеем

$$(C_m^2 x, x) \geqslant (C_n C_m x, x) \geqslant (C_n^2 x, x)$$

Т.е. получаем, что $\{(C_n^2x,x)\}$ — монотонно убывающая числовая последовательность, ограниченная снизу \Rightarrow существует предел. По лемме о зажатой последовательности, он является пределом $\{(C_nC_mx,x)\}$.

Рассмотрим

$$||C_m x - C_n x||^2 = ((C_m - C_n)x, (C_m - C_n)x) =$$

$$= ((C_m - C_n)^2 x, x)) = ((C_m^2 - 2C_m C_n + C_n^2)x, x) =$$

$$= (C_m^2 x, x) - 2(C_m C_n x, x) + (C_n^2 x, x) \xrightarrow[n, m \to \infty]{} 0$$

Следовательно, последовательность $\{C_n x\}$ фундаментальна и, тем самым, имеет предел $\Rightarrow \{A_n x\}$ имеет предел. Обозначим

$$Ax = \lim_{n \to \infty} A_n x$$

Имеем:

$$(Ax,y)=(\lim_{n\to\infty}A_nx,y)=(\ (\cdot,\cdot)$$
 — непрерывная функция) =
$$\lim_{n\to\infty}(A_nx,y)=\lim_{n\to\infty}(x,A_ny)=(x,\lim_{n\to\infty}A_ny)=(x,Ay)$$

Рассмотрим:

$$(Bx, x) - (Ax, x) = ((B - A)x, x) =$$

= $((B - \lim_{n \to \infty} A_n)x, x) = \lim_{n \to \infty} ((B - A_n)x, x) \ge 0$

Теорема 6.2 (О существовании квадратного корня). Пусть A — самосопряжённый неотрицательный оператор, тогда существует неотрицательный самосопряжённый оператор $B \mid B^2 = A$.

Замечание 6.1. Оператор B — единственный в классе операторов, перестановочных с любым оператором, перестановочным с A.

Доказательство. Определим

$$B_0 = 0$$

$$B_{n+1} = B_n + \frac{1}{2}(A - B_n^2)$$

Считаем, что $0 \leqslant A \leqslant I$

Упр 6.1. Методом математической индукции доказать, что B_n перестановочен c A, $B_n = B_n^*$, $B_n \leqslant I$ и для фиксированного m выполняется $B_n B_m = B_m B_n$.

Имеет место тождество:

$$I - B_{n+1} = \frac{1}{2}(I - B_n)^2 + \frac{1}{2}(I - A)$$

Проверим

$$\frac{1}{2}(I - B_n)^2 + \frac{1}{2}(I - A) = \frac{1}{2}I - B_n + \frac{1}{2}B_n^2 + \frac{1}{2}I - \frac{1}{2}A =$$

$$= I - B_n - \frac{1}{2}(A - B_n^2) = I - B_{n+1}$$

Ещё одно тождество:

$$B_{n+1} - B_n = \frac{1}{2}[(I - B_{n-1}) + (I - B_n)](B_n - B_{n-1}) \quad (\star)$$

Упр 6.2. Проверить (★).

Из $(\star) \Rightarrow B_{n+1} - B_n \geqslant 0 \Rightarrow \{B_n\}$ монотонно возрастает. По лемме 6.2 из ограниченности и монотонности $\{B_n\}$ следует, что существует предел:

$$B = \lim_{n \to \infty} B_n$$

Рассмотрим выражение:

$$B_{n+1} = B_n + \frac{1}{2}(A - B_n^2)$$

Перейдя к пределу при $n \to \infty$ получим

$$B = B + \frac{1}{2}(A - B^2)$$

Отсюда $A = B^2$.

6.1 Элементы спектральной теории

Опр 6.7. Пусть задан оператор $A: X \to X$, где $X = X(\mathbb{C})$. Собственным элементом оператора A называется такой $x \neq \theta$, что для некоторого $\lambda \in \mathbb{C}$ выполняется $Ax = \lambda x$. Число λ называется собственным числом оператора A.

Утв 6.5. Собственные элементы, отвечающие различным собственным числам, образуют линейно независимую систему.

Утв 6.6. Пусть A — линейный оператор. Тогда замыкание линейной оболочки собственных векторов является подпространством.

Теорема 6.3. Всякое собственное подпространство L линейного, вполне непрерывного оператора A, соответствующее собственному числу $\lambda \neq 0$ —конечномерно.

Доказательство. Пусть $\overline{B_R}(0)$ — замкнутый шар в L, радиуса R>0. Возьмём $\{x_n\}\subset \overline{B_R}(0)$.

Оператор A вполне непрерывен, следовательно, из $\{A\frac{x_n}{R}\}$ можно извлечь сходящуюся подпоследовательность y_{n_k} , где $y_{n_k} = \frac{1}{R}Ax_{n_k}$. Имеем

$$x_{n_k} = \frac{1}{\lambda} A x_{n_k} = \frac{R}{\lambda} \left(\frac{1}{R} A x_{n_k} \right) \Rightarrow x_{n_k}$$
 сходится

Таким образом, $\overline{B_R}(0)$ в L относительно компактен, т.е. L локально относительно компактно в X. По теореме 4.5 L - конечномерно.

___(Лекция №13, 29.11.2010)

Теорема 6.4. Пусть X — банахово, $A \in \sigma(X)$. Тогда $\forall R > 0$ вне круга $|\lambda| \leqslant R$ может содержаться лишь конечное число собственных чисел оператора A.

Следствие 6.2. Либо множество $\{\lambda\}$ конечно, либо существует единственная предельная точка, равная нулю.

Доказательство. Докажем от противного. Пусть $\exists R_0 > 0$ такой, что вне круга $\{\lambda \mid |\lambda| \leq R_0\}$ лежит бесконечно много собственных чисел $\{\lambda_n\}$ таких, что $\forall i \neq j : \lambda_i \neq \lambda_j$.

Выберем для каждого λ_n по одному собственному элементу x_n . Получим множество $\{x_n\}$. Определим

$$X_n = \overline{\{x_1, \dots, x_n\}}$$

Имеем:

$$X_n \subset X_{n+1}$$

По лемме 4.1 Рисса о почти перпендикуляре получаем

$$\exists y_n \in X_n \mid ||y_n|| = 1, \ ||y_n - x|| \geqslant \frac{1}{2} \ \forall x \in X_{n-1} \quad (\star)$$

Получили последовательность $\{y_n\}$. Рассмотрим последовательность $\{Ay_n\}$. Поскольку $A\in\sigma(X)$, то существует сходящаяся подпоследовательность. Пусть m>n, тогда

$$\begin{split} \|Ay_m - Ay_n\| &= \|(A - \lambda_m)y_m + \lambda_m y_m - (A - \lambda_n)y_n - \lambda_n y_n\| = \\ &= |\lambda_m| \cdot \left\| y_m + \frac{1}{\lambda_m} (A - \lambda_m)y_m - \frac{1}{\lambda_m} (A - \lambda_n)y_n - \frac{\lambda_n}{\lambda_m} y_n \right\| = \\ &= |\lambda_m| \cdot \left\| y_m - \underbrace{\left[-\frac{1}{\lambda_m} (A - \lambda_m)y_m + \frac{1}{\lambda_m} (A - \lambda_n)y_n + \frac{\lambda_n}{\lambda_m} y_n \right]}_{\text{обозначим}} \right\| = \\ &= |\lambda_m| \cdot \|y_m - x_{nm}\| \end{split}$$

Т.к. $y_m \in X_m, y_n \in X_n$, то мы можем разложить по базису:

$$y_m = \sum_{i=1}^m \alpha_{im} x_i$$
$$y_n = \sum_{i=1}^n \widetilde{\alpha}_{in} x_i$$

Тогда

$$(A - \lambda_m)y_m = Ay_m - \lambda_m y_m = \sum_{i=1}^m \alpha_{im} Ax_i - \lambda_m \sum_{i=1}^m \alpha_{im} x_i =$$
$$= \sum_{i=1}^{m-1} \alpha_{im} (\lambda_i - \lambda_m) x_i$$

Аналогично

$$(A - \lambda_n)y_n = \sum_{i=1}^{n-1} \widetilde{\alpha}_{in}(\lambda_i - \lambda_n)x_i$$

Отсюда видно, что

$$(A - \lambda_m)y_m \in X_{m-1}$$
$$(A - \lambda_n)y_n \in X_{n-1}$$

В итоге получаем:

$$x_{nm} \in X_{m-1}$$
, T.K. $m > n$

Отсюда

$$||Ay_m - Ay_n|| \geqslant \frac{R_0}{2}$$
 (в силу (*) и т.к. $|\lambda| > R_0$)

Получаем, что у $\{Ay_n\}$ не существует фундаментальной подпоследовательности, пришли к противоречию с тем, что $A \in \sigma(X) \Rightarrow$ не существует такого R_0 .

Теорема 6.5. Пусть H — гильбертово. $A: H \to H$ — вполне непрерывный, ненулевой оператор. Тогда у оператора A есть хотя бы одно собственное число $\neq 0$.

Доказательство. По лемме 6.1:

$$||A|| = \sup_{||x||=1} |(Ax, x)|$$

Следовательно, $\exists \{x_n\} \mid ||x_n|| = 1 \ \forall n$, и, либо $(Ax_n, x_n) \xrightarrow[n \to \infty]{} ||A||$, либо $(Ax_n, x_n) \xrightarrow[n \to \infty]{} -||A||$. Без ограничения общности будем считать, что имеет место первая сходимость (иначе перейдем к оператору B = -A).

Покажем, что число ||A|| — собственное число оператора A. Поскольку A вполне непрерывен, то

$$\exists \{n_m\} \ | \ \{Ax_{n_m}\}$$
— сходится, и по-прежнему:
$$(Ax_{n_m},x_{n_m}) \xrightarrow[m \to \infty]{} \|A\|.$$

Рассмотрим

$$||Ax_{n_m} - ||A||x_{n_m}||^2 = (Ax_{n_m} - ||A||x_{n_m}, Ax_{n_m} - ||A||x_{n_m}) =$$

$$= ||Ax_{n_m}||^2 - 2(Ax_{n_m}, ||A||x_{n_m}) + ||A||^2 \cdot 1 =$$

$$= ||Ax_{n_m}||^2 - 2||A||(Ax_{n_m}, x_{n_m}) + ||A||^2 \leqslant$$

$$\leqslant ||A||^2 \cdot \underbrace{||x_{n_m}||^2}_{1} - 2||A||(Ax_{n_m}, x_{n_m}) + ||A||^2 \xrightarrow[m \to \infty]{} 2||A||^2 - 2||A||^2 = 0$$

Имеет место тождество

$$x_{n_m} = \frac{1}{\|A\|} A x_{n_m} - \frac{1}{\|A\|} (A x_{n_m} - \|A\| x_{n_m}) \quad (\star)$$

В силу тождества (*) из сходимости $\{Ax_{n_m}\}$ получаем сходимость $\{x_{n_m}\}$ (x_{n_m} — элементы сферы, значит предел $\neq 0$). Имеем

$$x_{n_m} \xrightarrow[m \to \infty]{} x_0 \neq 0; \qquad Ax_{n_m} \xrightarrow[m \to \infty]{} Ax_0$$

Тогда

$$Ax_{n_m} - ||A||x_{n_m} \xrightarrow[m \to \infty]{} (Ax_0 - ||A||x_0)$$

Следовательно, т.к. $(Ax_{n_m} - \|A\|x_{n_m}) \xrightarrow[m \to \infty]{} 0$, то получаем

$$Ax_0 = ||A||x_0$$

Теорема 6.6. Пусть $H = H(\mathbb{R})$ —гильбертово пространство. Оператор $A \in \sigma(H), \ A = A^*.$ Определим:

$$m = \inf_{\|x\|=1} (Ax, x)$$

$$M = \sup_{\|x\|=1} (Ax, x)$$

Тогда все собственные числа оператора A лежат на отрезке [m,M], и при этом, если $M \neq 0$, то M—наибольшее собственное число оператора A. Если $m \neq 0$, то m—наименьшее собственное число оператора A.

Замечание 6.2. Используется тот факт, что собственные числа самосопряженного оператора действительны.

Доказательство. Пусть λ — собственное число оператора A, тогда

$$Ax = \lambda x, \quad x \neq 0$$
$$(Ax, x) = \lambda(x, x) = \lambda ||x||^{2}$$

Определим

$$y = \frac{x}{\|x\|}$$

Тогда

$$(Ay, y) = \lambda$$

Следовательно, $m \leqslant \lambda \leqslant M$

Рассмотрим

$$B = MI - A$$

Очевидно, что $B \geqslant 0$. Введем операцию $[\cdot, \cdot]$:

$$[x, y] = (Bx, y)$$

Заметим, что для $[\cdot, \cdot]$ выполняются все аксиомы скалярного произведения. Неравенство Коши-Буняковского в таком случае примет вид:

$$(Bx, y)^2 \leqslant (Bx, x) \cdot (By, y)$$

Поскольку $M=\sup_{\|x\|=1}(Ax,x)$, то по определению точной верхней грани

$$\exists \{x_n\} \mid ||x_n|| = 1 \ \forall n \ \text{и} \ (Ax_n, x_n) \xrightarrow[n \to \infty]{} M.$$
 Положим

$$x = x_n$$
; $y = Bx_n$

Получим:

$$[x,y]^{2} = (Bx,y)^{2} = (Bx_{n},Bx_{n})^{2} \leqslant (\text{нер-во Коши-Бун.}) \leqslant \leqslant (Bx_{n},x_{n}) \cdot (B^{2}x_{n},Bx_{n}) \leqslant \underbrace{(M-(Ax_{n},x_{n}))}_{\to 0} \cdot \underbrace{\|B\|^{3}}_{\text{число}} \Rightarrow \|Bx_{n}\|^{4} \xrightarrow[n\to\infty]{} 0 \Rightarrow (MI-A)x_{n} = Mx_{n} - Ax_{n} \xrightarrow[n\to\infty]{} 0 A \in \sigma(H) \Rightarrow \exists \{n_{m}\} \mid \{Ax_{n_{m}}\} \text{ сходится}$$

Аналогично предыдущей теореме получаем, что $\{x_{n_m}\}$ сходится:

$$x_{n_m} \xrightarrow[m \to \infty]{} x_0; \quad Ax_{n_m} \xrightarrow[m \to \infty]{} Ax_0$$

Получаем, что

$$(Mx_n - Ax_n) \xrightarrow[n \to \infty]{} (Mx_0 - Ax_0) \quad \text{if} \quad (Mx_n - Ax_n) \xrightarrow[n \to \infty]{} 0$$

Отсюда $Ax_0 = Mx_0$. Аналогично можно получить $Ax_0 = mx_0$. В силу того, что для любого λ выполняется $m \leq \lambda \leq M$, то получаем, что M — наибольшее собственное число, а m — наименьшее.

Следствие 6.3. Пусть $A \in \sigma(H)$, тогда

$$||A|| = |\lambda_1|$$
, где $\lambda_1 = max\{|\lambda| \mid Ax = \lambda x\}$

Доказательство. Очевидно в силу теорем 6.5 и 6.6.

Теорема 6.7 (Гильберта-Шмидта). Пусть $H = H(\mathbb{R})$ — гильбертово пространство, и пусть $A \in \sigma(H)$, $A = A^*$. Тогда $\forall x \in H$:

$$Ax = \sum_{k=1}^{\infty} \alpha_k x_k$$
, где

 $\{x_1, \dots, x_k, \dots\}$ — ортонормированная система собственных элементов оператора A.

3амечание 6.3. Существование ортонормированной системы $\{x_k\}$ очевидно.

Доказательство. В силу теоремы 6.4 существует наибольшее по модулю собственное число λ_1

$$A\varphi_1 = \lambda_1 \varphi_1; \quad \|\varphi_1\| = 1$$

Определим

$$H_1 = \{ x \in H \mid (x, \varphi_1) = 0 \}$$

Пусть $x \in H_1$, тогда

$$(Ax, \varphi_1) = (x, A\varphi_1) = (x, \lambda_1 \varphi_1) = \lambda_1(x, \varphi_1) = 0$$

$$\Rightarrow A: H_1 \to H_1;$$

 H_1 — подпространство H (линейность в силу $H = H(\mathbb{R})$, замкнутость из непрерывности скалярного произведения)

$$A \in \sigma(H_1)$$
, t.k. $A \in \sigma(H)$

По теореме 6.5 оператор A в H_1 имеет хотя бы одно ненулевое собственное число. Выберем среди этих чисел одно с наибольшим модулем. Обозначим его через λ_2 . Получаем

$$\varphi_2\in H_1\ \big|\ A\varphi_2=\lambda_2\varphi_2$$
 $\|\varphi_2\|=1$ (можно отнормировать), $(\varphi_1,\varphi_2)=0$

Определим

$$H_2 = \{x \in H_1 \mid (x, \varphi_2) = 0\}$$

По аналогии получаем $\{\varphi_k\}$ и $\{\lambda_k\}$.

Возможны два случая:

1) Цепочка прервется, т.е. $H_n = \{\theta\}$. Таким образом, оператор A на H_n — нулевой. Определим

$$y = x - \sum_{k=1}^{n} (x, \varphi_k) \varphi_k$$

Заметим, что

$$(y, \varphi_j) = 0 \quad \forall j = 1, \dots, n.$$

Т.е. получаем, что $y \in H_n$, где

$$H_n = \{x \mid (x, \varphi_j) = 0 \ \forall j = 1, \dots, n\}$$

Поскольку A на H_n — нулевой оператор, то

$$Ay = 0 \Rightarrow Ax = \sum_{k=1}^{n} \lambda_k(x, \varphi_k) \varphi_k$$

2) Цепочка бесконечная.

По следствию 6.3

$$||A||_{\mathcal{L}(H_n)}^2 = \lambda_{n+1}^2$$

Рассмотрим

$$\|Ay_n\|^2 = \left(Ax - A\sum_{k=1}^n (x, \varphi_k)\varphi_k, Ax - A\sum_{k=1}^n (x, \varphi_k)\varphi_k\right) \leqslant$$

$$\leqslant \lambda_{n+1}^2 \left\|x - \sum_{k=1}^n (x, \varphi_k)\varphi_k\right\|^2 =$$

$$= \lambda_{n+1}^2 \left(x - \sum_{k=1}^n (x, \varphi_k)\varphi_k, x - \sum_{k=1}^n (x, \varphi_k)\varphi_k\right) =$$

$$= \lambda_{n+1}^2 \left(\|x\|^2 - 2\sum_{i=1}^n (x, \varphi_k)^2 + \sum_{i=1}^n (x, \varphi_k)^2\right) =$$

$$= \lambda_{n+1}^2 (\|x\|^2 - \sum_{i=1}^n (x, \varphi_k)^2) \leqslant$$
(Неравенство Бесселя: $\sum_{k=1}^\infty (x, \varphi_k)^2 \leqslant \|x\|^2$)
$$\leqslant \lambda_{n+1}^2 \|x\|^2$$

Так как по следствию 6.2 $\lambda_n \xrightarrow[n\to\infty]{} 0$, то

$$||Ay_n||^2 = ||Ax - \sum_{k=1}^n (x, \varphi_k) A\varphi_k||^2 \xrightarrow[n \to \infty]{} 0 \Rightarrow Ax = \sum_{k=1}^\infty (x, \varphi_k) A\varphi_k$$

___(Лекция №14, 13.12.2010)

Следствие 6.4. Пусть $A \in \sigma(H)$, $A = A^*$, A— непрерывно обратим. Тогда из его собственных функций можно составить ортобазис пространства H.

$$Ax = \lim_{n \to \infty} \sum_{k=1}^{n} (x, \varphi_k) A\varphi_k$$

Следствие 6.5. Пусть $A \in \sigma(H)$, $A = A^*$, H— сепарабельно. Тогда в H существует ортонормированный базис из собственных функций.

Доказательство. Если $N(A) = \{0\}$, то получаем, что выполняются условия следствия 6.4.

Пусть $N(A) \neq \{0\}$. Рассмотрим

$$z = x - \sum_{k=1}^{\infty} (x, \varphi_k) \varphi_k \in N(A)$$

Известно, что в любом сепарабельном гильбертовом пространстве существует ортонормированный базис. Обозначим его $\{e_n\}$

$$z = \sum_{k=1}^{\infty} \alpha_k e_k \implies x = \sum_{k=1}^{\infty} \alpha_k e_k + \sum_{k=1}^{\infty} (x, \varphi_k) \varphi_k$$

Опр 6.8. Число λ называется регулярным числом (значением) оператора A, если

$$\exists (A - \lambda I)^{-1} \in \mathcal{L}(X)$$

Опр 6.9. Совокупность всех регулярных чисел оператора A называется резольвентным множеством и обозначается $\rho(A)$

Резольвента:
$$R_{\lambda}(A) = (A - \lambda I)^{-1}$$

Спектр: $\sigma(A) = \mathbb{C} \setminus \rho(A)$

Теорема 6.8. Пусть X — банахово пространство, $A \in \mathcal{L}(X)$. Тогда резольвентное множество $\rho(A)$ открыто.

Доказательство. Пусть $\lambda_0 \in \rho(A)$, тогда

$$A - \lambda I = \underbrace{A - \lambda_0 I}_{\text{обратим}} + (\lambda_0 - \lambda)I = (A - \lambda_0 I)(I + (\lambda_0 - \lambda)(A - \lambda_0 I)^{-1})$$

Если $\|(\lambda_0 - \lambda)(A - \lambda_0 I)^{-1}\| < 1$, то оператор $A - \lambda I$ обратим. Данное неравенство выполняется в тех случаях, когда $(\lambda_0 - \lambda)$ — малая величина:

$$|\lambda_0 - \lambda| < \varepsilon$$

Таким образом, для λ_0 существует малая окрестность, где сохраняется обратимость, следовательно $\rho(A)$ открыто.

Теорема 6.9. Пусть X — банахово, $A \in \mathcal{L}(X)$. Тогда

$$\{\lambda \mid |\lambda| > ||A||\} \subset \rho(A)$$

Доказательство. Пусть $\lambda \in \{\lambda \mid |\lambda| > ||A||\}$

Оператор $A - \lambda I$ можно представить в виде

$$A - \lambda I = -\lambda \left[I - \frac{1}{\lambda} A \right]$$
 $\|A\| < |\lambda| \implies \left\| \frac{1}{\lambda} A \right\| < 1 \implies \text{По теореме 2.2 } \exists \left(I - \frac{1}{\lambda} A \right)^{-1}$

Все возможные случаи:

- 1. $(A \lambda I)^{-1}$ не существует.
- 2. $A-\lambda I$ обратим, но $R(A-\lambda I)\neq X$, т.е. $(A-\lambda I)$ обратим на подпространстве.
- 3. $(A \lambda I)^{-1}$ существует, но неограничен.

Опр 6.10. Спектральным радиусом называется величина

$$r(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$$

Теорема 6.10. Пусть X — банахово, $A \in \mathcal{L}(X)$, тогда r(A) существует и конечен.

Доказательство. Рассмотрим

$$r_1(A) = \inf_{n \in \mathbb{N}} \left\{ \|A^n\|^{\frac{1}{n}} \right\}$$

Точная нижняя грань всегда существует, т.к. $\|A^n\|^{\frac{1}{n}}$ ограничен снизу нулём. По определению точной нижней грани получаем

$$\forall \varepsilon > 0 \ \exists m \in \mathbb{N} \ | \ ||A^m||^{\frac{1}{m}} \leqslant r_1 + \varepsilon$$

Пусть $p_n, q_n \in \mathbb{Z}_+ \mid n = p_n m + q_n$. Рассмотрим

$$||A^{n}||^{\frac{1}{n}} = ||A^{p_{n}m+q_{n}}||^{\frac{1}{n}} \leqslant ||A^{m}||^{\frac{p_{n}}{n}} \cdot ||A||^{\frac{q_{n}}{n}} \leqslant$$
$$\leqslant (r_{1} + \varepsilon)^{\frac{p_{n}m}{n}} \cdot ||A||^{\frac{q_{n}}{n}} = (r_{1} + \varepsilon)(r_{1} + \varepsilon)^{-\frac{q_{n}}{n}} ||A||^{\frac{q_{n}}{n}} \xrightarrow[n \to \infty]{} (r_{1} + \varepsilon)$$

В силу свойств предела можно считать, что при достаточно больших n

$$r_1 \leqslant \|A^n\|^{\frac{1}{n}} \leqslant r_1 + 2\varepsilon$$

По теореме о зажатой последовательности и в силу произвольности выбора ε

$$||A^n||^{\frac{1}{n}} \xrightarrow[n \to \infty]{} r_1$$

Следствие 6.6. $r(A) \leq ||A||$

Доказательство.

$$||A^n|| \leqslant ||A||^n \Rightarrow \sqrt[n]{||A^n||} \leqslant ||A||$$

Отсюда

$$r(A) \leqslant \|A^n\|^{\frac{1}{n}} \leqslant \|A\|$$

Теорема 6.11. Пусть X — банахово пространство, $A \in \mathcal{L}(X), \ r(A) < 1.$ Тогда оператор (I - A) непрерывно обратим.

Доказательство. Рассмотрим числовой ряд

$$\sum_{k=1}^{\infty} \|A^k\|$$

Если r(A) < 1, то ряд сходится по критерию Коши. Рассмотрим операторный ряд:

$$S = \sum_{k=0}^{\infty} A^k$$

Несложно показать, что последовательность $\{S_n = \sum_{k=0}^n A^k\}$ — фундаментальна.

Аналогично доказательству теоремы 2.2, можно показать, что S- правый и левый обратный к (I-A).

Следствие 6.7. Если для некоторого натурального m выполняется

$$||A^m|| < 1,$$

то оператор (I - A) непрерывно обратим.

Доказательство. $||A^m|| < 1 \Rightarrow r(A) < 1 \Rightarrow$ справедливы условия теоремы 6.11.

Теорема 6.12. Пусть X — банахово пространство, $A \in \mathcal{L}(X)$, и задано число $\lambda \mid \lambda > r(A)$. Тогда $\lambda \in \rho(A)$

Доказательство. Рассмотрим

$$S(\lambda) = -\sum_{k=0}^{\infty} \lambda^{-(k+1)} A^k$$

Имеем

$$\|\lambda^{-(k+1)}A^k\|^{\frac{1}{k}} = (|\lambda|^{-1}\|\lambda^{-k}A^k\|)^{\frac{1}{k}} = |\lambda|^{-\frac{1}{k}}|\lambda|^{-1}\|A^k\|^{\frac{1}{k}} \xrightarrow[k \to \infty]{} \frac{r(A)}{|\lambda|} < 1$$

По признаку Коши числовой ряд с такими слагаемыми сходится. Следовательно, исходный ряд тоже сходится.

Введём

$$S_n(\lambda) = -\sum_{k=0}^n \lambda^{-(k+1)} A^k$$

Рассмотрим

$$S_n(\lambda)(A - \lambda I) = I - \lambda^{-(n+1)} A^{n+1} \xrightarrow[n \to \infty]{} I$$
$$S_n(\lambda)(A - \lambda I) \xrightarrow[n \to \infty]{} S(\lambda)(A - \lambda I)$$

Аналогично для $(A-\lambda I)S_n(\lambda)$. Отсюда, $(A-\lambda I)$ непрерывно обратим, значит $\lambda \in \rho(A)$.

3амечание 6.4. Резольвента $S(\lambda) = -\sum_{k=0}^{\infty} \lambda^{-(k+1)} A^k$ аналитична в ∞ .

Теорема 6.13 (**Лиувилля**). Если функция f является аналитической на всей комплексной плоскости и ограничена, т.е. $|f(z)| \leq M < +\infty$ для $\forall z \in \mathbb{C}$, то $f \equiv \mathrm{const.}$

Теорема 6.14. Пусть X — банахово пространство, оператор $A \in \mathcal{L}(X)$. Тогда $\sigma(A) \neq \varnothing$.

Доказательство. От противного. Пусть $\sigma(A) = \varnothing$.

Докажем, что $R_{\lambda}(A)$ аналитична всюду. Пусть $\lambda_0 \in \rho(A)$ — фиксировано, $\lambda \in \rho(A)$ — произвольно. Имеем:

$$R_{\lambda}(A) = [I - (\lambda - \lambda_0)R_{\lambda_0}(A)]^{-1}R_{\lambda_0}(A) = \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k R_{\lambda_0}^{k+1}(A)$$

Получили представление $R_{\lambda}(A)$ в виде сходящегося ряда, значит, $R_{\lambda}(A)$ аналитична на всём $\rho(A)$.

Рассмотрим числовую функцию

$$\varphi(\lambda) = f(R_{\lambda}(A)x)$$
, где $f \in X^*$ — произвольный, $x \in X$.

Имеем

$$\|f(R_{\lambda}(A)x) + f\left(\sum_{k=0}^{n} \lambda^{-(k+1)} A^{k} x\right)\| \le$$

$$\le \|f\| \cdot \|R_{\lambda}(A)x + \sum_{k=0}^{n} \lambda^{-(k+1)} A^{k} x\| \le$$

$$\le \underbrace{\|f\| \cdot \|x\|}_{\text{фикс.}} \cdot \|R_{\lambda}(A) + \sum_{k=0}^{n} \lambda^{-(k+1)} A^{k}\|$$

Таким образом

$$\varphi(\lambda) = -\sum_{k=0}^{\infty} \lambda^{-(k+1)} A^k f(x)$$

Это означает, что $\varphi(\lambda)$ аналитична по λ в окрестности ∞ . Аналогичным образом получим, что $\varphi(\lambda)$ аналитична в окрестности любой точки из $\rho(A)$, а значит, и на всей $\mathbb C$.

Функция $\varphi(\lambda)$ ограничена на ∞ (и на любом круге с центром в начале координат) в силу представления в виде ряда.

Таким образом, $\varphi(\lambda)$ ограничена и аналитична всюду. По теореме Лиувилля: $\varphi(\lambda) = \mathrm{const.}$ Имеем

$$\varphi(\infty) = 0 \Rightarrow \varphi = 0 = f(R_{\lambda}(A)x) \ \forall x \in X, \ \forall f \in X^* \Rightarrow R_{\lambda}(A) = 0 \Rightarrow A \equiv 0$$

Пришли к противоречию, т.к. $A \neq 0$.

____(Лекция №15, 20.12.2010)

7 Топологические пространства и пространства сходимости.

Опр 7.1. Топологическим пространством называется множество X, в котором задано семейство подмножеств τ , обладающее следующими свойствами:

- 1. $X \in \tau$, $\emptyset \in \tau$;
- 2. Объединение любого и пересечение конечного числа элементов из τ принадлежит τ .

Обозначение: (X, τ) — топологическое пространство.

Опр 7.2. Множества, принадлежащие τ , называются открытыми.

Пример 7.1. Любое метрическое пространство (Стандартная метрическая топология).

 $\Pi pumep$ 7.2. τ —все подмножества X.

Пример 7.3. $\tau = \{X, \emptyset\}$ (Тривиальная топология).

- **Опр 7.3.** Пусть заданы две топологии τ_1 и τ_2 . Говорят, что топология τ_1 является более слабой, чем топология τ_2 ($\tau_1 \prec \tau_2$), если любое множество семейства τ_1 принадлежит множеству τ_2 .
- **Опр 7.4.** Окрестностью элемента $x \in X$ называется любое открытое множество, содержащее x.
- **Опр 7.5.** Топологическое пространство (X, τ) называется Хаусдорфовым, если у двух различных элементов из X существует две непересекающиеся окрестности.
- Пример 7.4. Евклидово пространство является Хаусдорфовым.
- Опр 7.6. Замкнутым множеством в топологическом пространстве (X, τ) называется множество M, дополнение которого открыто, т.е. $X \setminus M \in \tau$.
- **Опр 7.7.** Замыканием \overline{M} множества $M \subset X$ называется пересечение всех замкнутых множеств, содержащих M.
- **Утв 7.1.** Совокупность замкнутых множеств топологического пространства (X, τ) обладает следующими свойствами:
 - 1. X, \varnothing замкнуты.
 - 2. Объединение конечного и пересечение любого числа замкнутых множеств замкнуто.
- Опр 7.8. Множество М называется компактным, если из любого его открытого покрытия можно извлечь конечное подпокрытие.
- **Опр 7.9.** Пусть (X, τ) топологическое пространство. Подсистема τ^* семейства τ называется базой топологии τ , если любые элементы из τ можно представить в виде объединения элементов из τ^* .
- $\Pi pumep 7.5.$ Базой в нормированном пространстве X с топологией из примера 7.2 является семейство шаров

$$\{B_R(x) \mid R \in \mathbb{R}, x \in X\}$$

- Опр 7.10. Пусть задан оператор $A: X \to Y$. $Ax_0 = y_0$. Оператор A называется непрерывным в x_0 , если для любой окрестности V точки y_0 существует окрестность U точки $x_0 \mid A(U) \subset V$.
- Опр 7.11. Последовательность $\{x_n\}$ сходится к точке x_0 в топологическом пространстве (X,τ) , если для любой окрестности U точки x_0 $\exists N=N(U) \mid x_n \in U$ при $n \geqslant N$.

7.1 Пространства сходимости (Фреше)

Опр 7.12. Сходимостью в множестве X называется совокупность $\mathcal{E}(X)$ последовательностей $\{x_n\}$, для которых выполняются следующие свойства:

- 1. Каждой последовательности соответствует ровно один элемент $x \in X;$
- 2. Стационарной последовательности $\{x_n = x\}$ ставится в соответствие x;
- 3. Каждой подпоследовательности $\{x_{n_k}\}$ последовательности $\{x_n\}$ ставится в соответствие тот же самый элемент x, что и для $\{x_n\}$.

Элемент х называется пределом.

Обозначение: $\{x_n\} \to x - x$ ставится в соответствие $\{x_n\}$.

Опр 7.13. Линейное пространство X называется пространством сходимости, если в нем задана сходимость $\mathcal{E}(X)$, для которой выполняются следующие аксиомы:

1. Ecau
$$\{x_n\}, \{y_n\} \in \mathcal{E}(X) \mid \{x_n\} \to x \ u \ \{y_n\} \to y, \ mo$$

$$\{x_n + y_n\} \in \mathcal{E}(X) \ u \ \{x_n + y_n\} \to x + y$$

2. Ecau
$$\lambda \in \mathbb{R}, \{x_n\} \in \mathcal{E}(X) \mid \{x_n\} \to x, mo$$

$$\{\lambda x_n\} \in \mathcal{E}(X) \ u \ \{\lambda x_n\} \to \lambda x$$

Опр 7.14. Будем говорить, что $\{f_n\} \subset D$ сходится κ 0, если:

- 1. $\operatorname{supp} f_n \subset \overline{B_R}(0)$ для некоторого R > 0, где $\operatorname{supp} f$ замыкание множества точек, в которых $f \neq 0$.
- 2. $D^{\alpha}f_{n} \Rightarrow 0$ при $n \to \infty$ (Производные всех порядков стремятся к нулю равномерно).

Опр 7.15. Функция f(x) называется финитной, если $\operatorname{supp} f \subset \overline{B_R}(0)$,

 $\Pi pumep$ 7.6. Пусть $D = C_0^{\infty}(\mathbb{R}^n)$ — совокупность всех бесконечно дифференцируемых, финитных в \mathbb{R}^n функций. Пространство D неметризуемо (в том смысле, что не существует метрики, сходимость по которой определяет сходимость в D).

Пример 7.7. Функция Соболева:

$$w_h(x) = \begin{cases} e^{-\frac{h^2}{h^2 - |x|^2}} & \text{если } |x| < h, \\ 0 & \text{иначе.} \end{cases}$$

 $w_h(x) \in C_0^\infty(\mathbb{R}^n)$ и не раскладывается в ряд Тейлора.

Опр 7.16. Обобщенной функцией называется произвольный непрерывный линейный функционал над $D = C_0^{\infty}(\mathbb{R}^n)$

Опр 7.17. Пусть заданы два пространства сходимости $(X, \mathcal{E}(X))$, $(Y, \mathcal{E}(Y))$. Пусть задан оператор $A: X \to Y$, $Ax_0 = y_0$.

Оператор A называется непрерывным в x_0 , если $\forall \{x_n\} \in \mathcal{E}(X)$, имеющей своим пределом x_0 , выполняется

$$\{Ax_n\} \in \mathcal{E}(Y) \ u \ \{Ax_n\} \to y_0$$

8 Дифференциальное исчисление в нормированных пространствах.

Считаем, что X, Y — банаховы пространства, определён $F: X \to Y$, и пусть $x_0 \in D(F)$ такая, что существует окрестность $U(x_0) \subset D(F)$.

Опр 8.1. Оператор F называется дифференцируемым по Фреше в точке x_0 оператором, если существует $A \in \mathcal{L}(X,Y)$ такой, что выполняется

$$F(x) - F(x_0) = A(x - x_0) + \eta(x - x_0), \ \ r\partial e \ \lim_{x \to x_0} \frac{\|\eta(x - x_0)\|}{\|x - x_0\|} = 0$$

Оператор A называется производной по Фреше в точке x_0 $(F'(x_0) = A)$, $Ah - \partial u \phi \phi$ еренциал по Фреше в точке x_0 $(Ah = dF(x_0, h))$.

Свойства производной Фреше:

- 1) Если A линеен, то A' = A.
- **2)** Если оператор F имеет производную Фреше F' в точке x_0 , то F непрерывен в x_0 .
- **3)** $(F+G)'(x_0) = F'(x_0) + G'(x_0)$, если соответствующие производные существуют.

Теорема 8.1. Пусть X, Y, Z — банаховы пространства, $F: X \to Y$ и $x_0 \in D(F)$ с некоторой окрестностью $U(x_0) \subset D(F), y_0 = F(x_0)$. Пусть $G: Y \to Z$ и $y_0 \in D(G)$ с некоторой окрестностью $V(y_0) \subset D(G)$.

Тогда, если операторы F и G дифференцируемы в точках x_0 и y_0 соответственно, то

$$G(F)'(x_0) = G'(y_0)F'(x_0)$$

Доказательство. Обозначим $A = F'(x_0)$ и $B = G'(y_0)$. Тогда

$$F(x) - F(x_0) = A(x - x_0) + \eta(x - x_0)$$

$$\lim_{x \to x_0} \frac{\|\eta(x - x_0)\|}{\|x - x_0\|} = 0$$

$$G(y) - G(y_0) = B(y - y_0) + \rho(y - y_0)$$

$$\lim_{y \to y_0} \frac{\|\rho(y - y_0)\|}{\|y - y_0\|} = 0$$

Возьмём x из окрестности x_0 , y = F(x). Поскольку $\exists F'(x_0)$, то F непрерывен в $x_0 \Rightarrow F(x)$ находится в окрестности точки y_0 . Получаем

$$G(F(x)) - G(F(x_0)) = B(F(x) - F(x_0)) + \rho(F(x) - F(x_0)) =$$

$$= (BA)(x - x_0) + \delta(x - x_0),$$

$$\delta(x - x_0) = B(F(x) - F(x_0)) + \rho(F(x) - F(x_0)) - (BA)(x - x_0)$$

Рассмотрим

$$\frac{\|\delta(x-x_0)\|}{\|x-x_0\|} = \frac{\|B(F(x)-F(x_0)) - BA(x-x_0) + \rho(F(x)-F(x_0))\|}{\|x-x_0\|} = \frac{\|B(A(x-x_0) + \eta(x-x_0)) - BA(x-x_0) + \rho(F(x)-F(x_0))\|}{\|x-x_0\|} = \frac{\|B(\eta(x-x_0)) + \rho(F(x)-F(x_0))\|}{\|x-x_0\|} \le \frac{\|B\|\|\eta(x-x_0)\|}{\|x-x_0\|} + \frac{\|\rho(F(x)-F(x_0))\|}{\|x-x_0\|} = \frac{\|B\|\|\eta(x-x_0)\|}{\|x-x_0\|} + \frac{\|\rho(y-y_0)\|}{\|y-y_0\|} \cdot \frac{\|F(x)-F(x_0)\|}{\|x-x_0\|} \le \frac{\|B\|}{\|x-x_0\|} + \frac{\|\eta(x-x_0)\|}{\|x-x_0\|} + \frac{\|\rho(y-y_0)\|}{\|y-y_0\|} \cdot \left(\frac{\|A\|}{\|x-x_0\|} + \frac{\|\eta(x-x_0)\|}{\|x-x_0\|}\right) \xrightarrow{x \to x_0} 0$$

Опр 8.2. Оператор F называется непрерывно дифференцируемым в точке x_0 , если существует производная Фреше F'(x) для любого x из некоторой окрестности $U(x_0)$, и эта производная Фреше непрерывна по x в точке x_0 .

Опр 8.3. Пусть M — открытое множество. Оператор F называется непрерывно дифференцируемым на M, если он непрерывно дифференцируем в каждой точке $x \in M$.

Теорема 8.2 (**Лагранжа**). Пусть F непрерывно дифференцируем в выпуклой окрестности $U(x_0)$. Тогда $\forall x \in U(x_0)$ имеет место равенство

$$F(x) - F(x_0) = \int_0^1 F'(x_0 + \theta(x - x_0))(x - x_0)d\theta$$

Здесь $F'(x_0+\theta(x-x_0))(x-x_0)$ — функция по θ . Берётся интеграл Римана.

Доказательство. Рассмотрим числовую функцию:

$$\varphi(\theta) = x_0 + \theta(x - x_0)$$

Её производная:

$$\varphi'(\theta) = x - x_0$$

Рассмотрим оператор:

$$\Phi(\theta) = F(\varphi(\theta)) : \mathbb{R} \to Y$$

Поскольку F и φ дифференцируемы по Фреше, то в соответствии с теоремой 8.1 о производной суперпозиции:

$$\Phi'(\theta) = F'(\varphi(\theta))\varphi'(\theta) = F'(\varphi(\theta))(x - x_0)$$

Интегрируем уравнение от 0 до 1, левую часть получаем по формуле Ньютона-Лейбница.

Лемма 8.1. Пусть M — выпуклое открытое множество пространства X, оператор F непрерывно дифференцируем на M и $||F'(x)|| \leq K \ \forall x \in M$.

Тогда
$$\forall x_1, x_2 \in M$$
 выполняется условие Липшица:

$$||F(x_1) - F(x_2)|| \le K||x_1 - x_2||$$

Доказательство. Так как M выпукло, то отрезок $[x_1, x_2] \in M$, значит применима формула Лагранжа:

$$F(x_1) - F(x_2) = \int_0^1 F'(x_2 + \theta(x_1 - x_2))(x_1 - x_2)d\theta$$

Возьмём норму слева и справа:

$$||F(x_1) - F(x_2)|| = \left\| \int_0^1 F'(x_2 + \theta(x_1 - x_2))(x_1 - x_2) d\theta \right\| \le$$

$$\le \int_0^1 ||F'(x_2 + \theta(x_1 - x_2))(x_1 - x_2)|| d\theta \le$$

$$\le \int_0^1 ||F'(x_2 + \theta(x_1 - x_2))|| \cdot ||(x_1 - x_2)|| d\theta \le$$

$$\le \int_0^1 K||(x_1 - x_2)|| d\theta = K||(x_1 - x_2)||$$

Лемма 8.2. Пусть $M \subset X$ —открытое, выпуклое множество, оператор F непрерывно дифференцируем на M, и пусть выполняется условие Липшица для производной:

$$||F'(x_1) - F'(x_2)|| \le K||x_1 - x_2|| \quad \forall x_1, x_2 \in M$$

Тогда имеет место неравенство:

$$||F(x_1) - F(x_2) - F'(x_2)(x_1 - x_2)|| \le \frac{K}{2} ||x_1 - x_2||^2$$

Доказательство. По условию F' непрерывна по x на M. Получаем

$$\|F(x_1) - F(x_2) - F'(x_2)(x_1 - x_2)\| =$$

$$= \left\| \int_0^1 F'(x_2 + \theta(x_1 - x_2))(x_1 - x_2) d\theta - \underbrace{F'(x_2)(x_1 - x_2)}_{\text{He 3aB. OT } \theta} \right\| =$$

$$= \left\| \int_0^1 [F'(x_2 + \theta(x_1 - x_2)) - F'(x_2)](x_1 - x_2) d\theta \right\| \leqslant$$

$$\leqslant \int_0^1 \|F'(x_2 + \theta(x_1 - x_2)) - F'(x_2)\| \|x_1 - x_2\| d\theta \leqslant$$
(Воспользуемся условием Липшица)
$$\leqslant K \|x_1 - x_2\| \int_0^1 \|x_2 + \theta(x_1 - x_2) - x_2\| d\theta =$$

$$= K \|x_1 - x_2\|^2 \int_0^1 \theta d\theta = \frac{K}{2} \|x_1 - x_2\|^2$$

Лемма 8.3. Пусть X — банахово пространство, множество $M \subset X$ выпукло, замкнуто и ограничено. Пусть задан оператор $F: M \to M$ и пусть на множестве M оператор F имеет непрерывную по x производную Фреше, причем

$$||F'(x)|| \le q < 1 \ \forall x \in M$$

Тогда оператор F — сжимающий на M.

Доказательство. Необходимо доказать

$$||F(x_1) - F(x_2)|| \le q||x_1 - x_2||$$

Если x_1 и x_2 — внутренние точки M, то получаем требуемое по формуле Лагранжа. Если хотя бы одна из них лежит на границе, то с помощью предельного перехода:

$$x_1^{(n)} \in int(M), \quad x_1^{(n)} \xrightarrow[n \to \infty]{} x_1$$

 $x_2^{(n)} \in int(M), \quad x_2^{(n)} \xrightarrow[n \to \infty]{} x_2$

Опр 8.4. Пусть $F(x): X \to Y; \ U(x_0) \subset D(F)$. Дифференциалом Гато (вариацией) называется предел

$$\delta F(x_0,h) = \lim_{t \to 0} \frac{F(x_0 + th) - F(x_0)}{t}, \quad t \in \mathbb{R}, \ h \in X -$$
фиксированный

если этот предел существует и конечен.

Опр 8.5. Если вариация является линейным, ограниченным по h оператором ($\delta F(x_0,h)=Ah$), то A называется производной Гато в точке x_0 оператора F.

 Π ример 8.1.

$$f(x,y) = \begin{cases} 1, & y = x^2, \\ 0, & y \neq x^2 \end{cases}$$

У этой функции существует производная по любому направлению в нуле, но f(x,y) не является дифференцируемой.

Замечание 8.1. Если оператор имеет производную Фреше, то он имеет производную Гато.

Теорема 8.3. Пусть в шаре $B_R(x_0)$ оператор F имеет дифференциал Гато $\delta F(x_0, h)$, равномерно непрерывный по $x \in B_R(x_0)$ и равномерно непрерывный по $h \in X$. Тогда оператор F имеет в шаре $B_R(x_0)$ производные Гато и Фреше, причем они совпадают.

Без доказательства.

Следствие 8.1. Если производная Гато существует и непрерывна в некоторой окрестности точки x_0 , то в x_0 существует производная Фреше и она совпадает с производной Гато.

Без доказательства.

__(Лекция №16, 27.12.2010)

9 Метод Ньютона-Канторовича

Пусть K, m, η — некоторые постоянные. Определим

$$q = \frac{1}{2}Km^2\eta;$$

$$R_1 = m\eta \sum_{n=0}^{\infty} q^{2^n - 1}.$$

Нетрудно установить, что ряд в выражении для R_1 сходится (считаем, что q < 1).

Теорема 9.1 (**Ньютона-Канторовича**). Пусть X — банахово пространство, задано число $R > R_1$, и пусть на шаре $B_R(x_0)$ определён оператор F(x), удовлетворяющий следующим условиям

- 1. F(x) непрерывно дифференцируем в $B_R(x_0)$
- 2. $||F(x_0)|| \leq \eta$
- 3. $||F'(x_1) F'(x_2)|| \le K||x_1 x_2|| \quad \forall x_1, x_2 \in B_R(x_0)$
- 4. Оператор $[F'(x)]^{-1}$ существует и непрерывен в $B_R(x_0)$, причём

$$\|\left[F'(x)\right]^{-1}\|\leqslant m$$

5.
$$q = \frac{1}{2}Km^2\eta < 1$$

Тогда
$$\exists x^* \in \overline{B_{R_1}}(x_0) \mid F(x^*) = 0.$$

Доказательство. Построим последовательность $\{x_n\}$ следующим образом:

$$x_n = x_{n-1} - [F'(x_{n-1})]^{-1} F(x_{n-1})$$

Заметим, что $[F'(x_{n-1})]^{-1}$ линеен (по определению производной Фреше). Покажем, что $x_1 \in \overline{B_{R_1}}(x_0)$

$$||x_1 - x_0|| = ||[F'(x_0)]^{-1} F(x_0)|| \le m\eta \le R_1$$

Имеем

$$x_1 - x_0 = -[F'(x_0)]^{-1} F(x_0)$$

Применим оператор $F'(x_0)$ к обеим частям равенства

$$F'(x_0)(x_1 - x_0) + F(x_0) = 0$$

Получаем

$$||F(x_1)|| = ||F(x_1) - (\underbrace{F(x_0) + F'(x_0)(x_1 - x_0)}_{=0})|| =$$

$$= ||F(x_1) - F(x_0) - F'(x_0)(x_1 - x_0)|| \le (\text{Jemma 8.2}) \le \frac{K}{2} ||x_1 - x_0||^2$$

Докажем с помощью математической индукции, что

$$||x_n - x_{n-1}|| \leqslant m\eta q^{2^{n-1}-1}$$
$$||F(x_n)|| \leqslant \frac{K}{2} ||x_n - x_{n-1}||^2$$

База индукции (n=1) выполняется— как показано выше, верны оба неравенства. Предположим, что для n оба неравенства выполняются. Необходимо показать для n+1:

$$||x_{n+1} - x_n|| \leqslant m\eta q^{2^n - 1}$$
$$||F(x_{n+1})|| \leqslant \frac{K}{2} ||x_{n+1} - x_n||^2$$

Имеем

$$x_{n+1} - x_n = -\left[F'(x_n)\right]^{-1} F(x_n)$$

$$\|x_{n+1} - x_n\| = \|\left[F'(x_n)\right]^{-1} F(x_n)\| \leqslant m \|F(x_n)\| \leqslant$$

$$\leqslant_{\binom{\text{предположение}}{\text{индукции}}} m \frac{K}{2} \|x_n - x_{n-1}\|^2 \leqslant_{\binom{\text{предположение}}{\text{индукции}}} \frac{K}{2} m^3 \eta^2 q^{2^n - 2} =$$

$$= m \eta (\underbrace{\frac{1}{2} m^2 \eta K}) q^{2^n - 2} = m \eta q^{2^n - 2 + 1} = m \eta q^{2^n - 1}$$

Имеем

$$x_{n+1} - x_n = -\left[F'(x_n)\right]^{-1} F(x_n)$$

Применим оператор $F'(x_n)$ к обеим частям равенства

$$F'(x_n)(x_{n+1} - x_n) + F(x_n) = 0$$

Получаем

$$||F(x_{n+1})|| = ||F(x_{n+1}) - (\underbrace{F(x_n) + F'(x_n)(x_{n+1} - x_n)}_{=0})|| =$$

$$= ||F(x_{n+1}) - F(x_n) - F'(x_n)(x_{n+1} - x_n)|| \le$$

$$\le (\text{Лемма 8.2}) \le \frac{K}{2} ||x_{n+1} - x_n||^2$$

Таким образом, показали, что неравенства верны $\forall n \in \mathbb{N}$.

Покажем, что $x_{n+1} \in \overline{B_{R_1}}(x_0)$. Рассмотрим

$$||x_{n+1} - x_0|| = ||x_{n+1} - x_n + x_n - x_{n-1} + \dots + x_1 - x_0|| \le$$

$$\le ||x_{n+1} - x_n|| + \dots + ||x_1 - x_0|| \le m\eta q^{2^{n-1}} + \dots + m\eta q^{2^{n-1}} =$$

$$= m\eta \sum_{i=0}^{n} q^{2^{i-1}} \le m\eta \sum_{i=0}^{\infty} q^{2^{i-1}} = R_1$$

Докажем, что элементы x_n образуют фундаментальную последовательность. Рассмотрим

$$||x_{n+p} - x_n|| = ||x_{n+p} - x_{n+p-1} + x_{n+p-1} - x_{n+p-2} + \dots + x_{n+1} - x_n|| \le$$

$$\le ||x_{n+p} - x_{n+p-1}|| + \dots + ||x_{n+1} - x_n|| \le m\eta \sum_{i=n}^{n+p} q^{2^{i-1}}$$

Ряд $\sum_{i=0}^{\infty} q^{2^i-1}$ сходится, следовательно, по критерию Коши

$$\forall \varepsilon > 0 \; \exists N = N(\varepsilon) \; \big| \; \forall n \geqslant N, \; \forall p > 0 :$$

$$\sum_{i=n}^{n+p} q^{2^{i}-1} < \frac{\varepsilon}{m\eta}$$

Получаем, что $\{x_n\}$ фундаментальна, следовательно, т.к. X — банахово пространство, $\{x_n\}$ сходится, т.е.

$$\exists x^* \mid x^* = \lim_{n \to \infty} x_n$$

Очевидно, что $x^* \in \overline{B_{R_1}}(x_0)$. Имеем

$$x_n = x_{n-1} - [F'(x_{n-1})]^{-1} F(x_{n-1})$$

Согласно 4 пункту теоремы $[F'(x)]^{-1}$ существует и непрерывен, следовательно, можно перейти к пределу:

$$x^* = x^* - [F'(x^*)]^{-1} F(x^*) \Rightarrow$$

 $\Rightarrow [F'(x^*)]^{-1} F(x^*) = 0$

Поскольку $[F'(x^*)]^{-1}$ взаимно однозначен, то получаем

$$[F'(x^*)]^{-1} F(x^*) = 0 \Leftrightarrow F(x^*) = 0$$

Оценим скорость сходимости

$$||x^* - x_n|| \le m\eta \sum_{i=n}^{\infty} q^{2^{i-1}} = m\eta \left(q^{2^{n-1}} + q^{2^{n+1}-1} + \dots \right) =$$

$$= m\eta q^{2^{n-1}} \left[1 + q^{2^{n+1}-2^n} + q^{2^{n+2}-2^n} + \dots \right]$$

Известно неравенство $2^s-1\geqslant s$ для натуральных s. Отсюда

$$q^{2^{n+s}-2^n} = q^{2^n(2^s-1)} \leqslant (q<1) \leqslant q^{s2^n}$$

Получаем

$$||x^* - x_n|| \le m\eta q^{2^n - 1} \sum_{s=0}^{\infty} q^{s2^n} \le \frac{m\eta}{1 - q^{2^n}} \cdot q^{2^n - 1}$$

Теорема 9.2 (**Канторовича**). Пусть X — банахово пространство. Определим

$$R_2 = \frac{1 - \sqrt{1 - 2m^2 K \eta}}{mK}$$

Пусть $R > R_2$, и пусть на шаре $B_R(x_0)$ определён оператор F(x), удовлетворяющий следующим условиям

1. F(x) непрерывно дифференцируем в $B_R(x_0)$

2.
$$||F(x_0)|| \leq \eta$$

3.
$$||F'(x_1) - F'(x_2)|| \le K||x_1 - x_2|| \quad \forall x_1, x_2 \in B_R(x_0)$$

4. Оператор $[F'(x_0)]^{-1}$ существует и непрерывен в $B_R(x_0)$, причём

$$\| [F'(x_0)]^{-1} \| \leqslant m$$

5. $2m^2K\eta < 1$

Тогда
$$\exists x^* \in \overline{B_{R_2}}(x_0) \mid F(x^*) = 0.$$

Доказательство. Построим последовательность $\{x_n\}$ следующим образом:

$$x_n = x_{n-1} - [F'(x_0)]^{-1} F(x_{n-1})$$

Определим оператор

$$\Phi(x) = x - [F'(x_0)]^{-1} F(x)$$

Докажем, что Φ переводит $\overline{B_{R_2}}(x_0)$ в себя и является сжимающим. Пусть $x \in \overline{B_{R_2}}(x_0)$. Рассмотрим

$$\left\| \Phi(x) - x_0 \right\| = \left\| x - x_0 - [F'(x_0)]^{-1} F(x) \right\| =$$

$$= \left\| [F'(x_0)]^{-1} (F'(x_0)(x - x_0) - F(x)) \right\| =$$

$$= \left\| [F'(x_0)]^{-1} (F(x) - F(x_0) - F'(x_0)(x - x_0) + F(x_0)) \right\| \le$$

$$\le \left\| [F'(x_0)]^{-1} (F(x) - F(x_0) - F'(x_0)(x - x_0)) \right\| + \left\| [F'(x_0)]^{-1} F(x_0) \right\| \le$$

$$\le (\text{по лемме } 8.2) \le m \frac{K}{2} \|x - x_0\|^2 + m \|F(x_0)\| \le \frac{mK}{2} R_2^2 + m\eta =$$

$$= \frac{mK}{2} \cdot \frac{1 + 1 - 2m^2 K \eta - 2\sqrt{1 - 2m^2 K \eta}}{m^2 K^2} + m\eta =$$

$$= \frac{1 - m^2 K \eta - \sqrt{1 - 2m^2 K \eta}}{mK} + m\eta = \frac{1 - \sqrt{1 - 2m^2 K \eta}}{mK} = R_2$$

Получили, что Φ переводит $\overline{B_{R_2}}(x_0)$ в себя. Имеем

$$\Phi = I - [F'(x_0)]^{-1} F$$
 по теореме $8.1 \ \Rightarrow \ \Phi'(x) = I - [F'(x_0)]^{-1} F'(x)$

Оценим

$$\|\Phi'(x)\| = \|I - [F'(x_0)]^{-1} F'(x)\| = \|[F'(x_0)]^{-1} (F'(x_0) - F'(x))\| \le$$

$$\le m\|F'(x_0) - F'(x)\| \le mK\|x - x_0\| \le mkR_2 = 1 - \sqrt{1 - 2m^2K\eta} < 1$$

По лемме 8.3 получаем, что Φ — сжимающий, следовательно, существует единственная неподвижная точка $x^* \in \overline{B_{R_2}}(x_0) \, \big| \, x^* = \Phi(x^*)$. Получаем

$$x^* = \Phi(x^*) = x^* - [F'(x_0)]^{-1} F(x^*) \implies [F'(x_0)]^{-1} F(x^*) = 0$$

Поскольку $[F'(x_0)]^{-1}$ взаимно однозначен, то

$$[F'(x_0)]^{-1} F(x^*) = 0 \Leftrightarrow F(x^*) = 0$$

Следствие 9.1. Известно, что скорость сходимости в методе последовательных приближений для сжимающих операторов

$$||x_n - x^*|| \le \frac{q^n}{1 - q} ||\Phi(x_0) - x_0|| \le m\eta \frac{q^n}{1 - q}, \text{ где } q = mKR_2.$$

амечание 9.1. Чем ближе мы попадём начальным приближением x_0 к x^* (т.е. чем меньше η), тем больше будет скорость сходимости.

10 Решения

Упражнение. 1.1 (страница 5)

(\Leftarrow) Пусть линейный оператор A ограничен и пусть $\{x_n\}$ — последовательность элементов из X ($\forall n: x_n \in X$) такая, что $x_n \xrightarrow[n \to \infty]{} 0$.

Тогда
$$\exists M > 0 \mid ||Ax_n|| \leqslant M||x_n|| \Rightarrow Ax_n \xrightarrow[n \to \infty]{} 0$$

 (\Rightarrow) Пусть A непрерывен. Докажем, что он ограничен.

Пусть это не так, тогда $\exists \{x_n\} \mid ||Ax_n|| > n||x_n||$ (здесь M = n).

Определим $y_n = \frac{x_n}{n||x_n||}$ $(n||x_n|| \neq 0$, иначе $Ax_n = 0$, что противоречит $||Ax_n|| > n||x_n||$).

Имеем:

$$y_n \xrightarrow[n \to \infty]{} 0$$
, t.k. $||y_n - 0|| = ||\frac{x_n}{n||x_n||}|| = \frac{1}{n} \xrightarrow[n \to \infty]{} 0$

Тогда согласно непрерывности оператора A последовательность $\{Ay_n\}$ должна сходится к 0. Проверяем:

$$||Ay_n|| = ||A\left(\frac{x_n}{n||x_n||}\right)|| = \frac{1}{n||x_n||}||Ax_n|| > 1$$

Пришли к противоречию, следовательно, оператор A ограничен.

Упражнение. 1.2 (страница **5**)

1. Имеем
$$\|Ax\| \leqslant \|A\| \|x\| \ \forall x \in X \Rightarrow \sup_{\|x\|=1} \|Ax\| \leqslant \|A\| \ (\star)$$

С другой стороны, из определения точной нижней грани:

$$\forall \varepsilon > 0 \,\exists x_{\varepsilon} \in X, \, x_{\varepsilon} \neq \theta \, | \, \|Ax_{\varepsilon}\| \geqslant (\|A\| - \varepsilon) \|x_{\varepsilon}\|$$
 Пусть $y_{\varepsilon} = \frac{x_{\varepsilon}}{\|x_{\varepsilon}\|}$, тогда $\|Ay_{\varepsilon}\| = \frac{1}{\|x_{\varepsilon}\|} \|Ax_{\varepsilon}\| \geqslant \|A\| - \varepsilon$

Для некоторого элемента это верно, следовательно:

$$\sup_{\|x\|=1} \|Ax\| \geqslant \|A\| - \varepsilon \Rightarrow \sup_{\|x\|=1} \|Ax\| \geqslant \|A\| \ (\star\star)$$

Из (\star) и $(\star\star)$ следует требуемое.

2. Пусть $x \in X, x \neq \theta, y = \frac{x}{\|x\|}$. Тогда

$$||A|| = \sup_{||x||=1} ||Ay|| = \sup_{x \neq \theta} \frac{||Ax||}{||x||}$$

Упражнение. 1.3 (страница 8)

Необходимо доказать, что $|\rho(x_n, y_n) - \rho(x_m, y_m)| \le \rho(x_n, x_m) + \rho(y_n, y_m)$. Покажем это:

$$\rho(x_n, y_n) \leq \rho(x_n, x_m) + \rho(x_m, y_m) + \rho(y_m, y_n);$$

$$\rho(x_n, y_n) - \rho(x_m, y_m) \leq \rho(x_n, x_m) + \rho(y_m, y_n) (\star)$$

С другой стороны:

$$\rho(x_m, y_m) \leqslant \rho(x_m, x_n) + \rho(x_n, y_n) + \rho(y_n, y_m);
\rho(x_m, y_m) - \rho(x_n, y_n) \leqslant \rho(x_m, x_n) + \rho(y_n, y_m) \; (\star\star)
\text{Из } (\star) \text{ и } (\star\star) \Rightarrow |\rho(x_n, y_n) - \rho(x_m, y_m)| \leqslant \rho(x_n, x_m) + \rho(y_n, y_m)$$

Упражнение. 1.4 (страница 8) Доказать, что ρ_1 – метрика.

• Поскольку ρ является метрикой, то

$$\rho(x_n, y_n) \geqslant 0 \Rightarrow \rho_1(x^*, y^*) = \lim_{n \to \infty} \rho(x_n, y_n) \geqslant 0.$$

T.е. получили, что ρ_1 отображает в \mathbb{R}_+ .

- $\rho_1(x_n, y_n) = \lim_{n \to \infty} \rho(x_n, y_n) = 0$. Это означает, что последовательности $\{x_n\}$ и $\{y_n\}$ эквивалентны, следовательно, они принадлежат одному и тому же классу эквивалентности, т.е. $x^* = y^*$.
- $\rho_1(x^*, y^*) = \rho_1(y^*, x^*)$ очевидно.
- Если $\{x_n\} \in x^*, \{y_n\} \in y^*, \{z_n\} \in z^*$, то:

$$\rho_1(x^*, z^*) = \lim_{n \to \infty} \rho(x_n, z_n) \leqslant \lim_{n \to \infty} (\rho(x_n, y_n) + \rho(y_n, z_n)) =$$

$$= \lim_{n \to \infty} \rho(x_n, y_n) + \lim_{n \to \infty} \rho(y_n, z_n) = \rho_1(x^*, y^*) + \rho_1(y^*, z^*)$$

Упражнение. 2.1 (страница 17) Доказать линейность обратного оператора.

1. Пусть $x = A^{-1}(y_1 + y_2) - A^{-1}y_1 - A^{-1}y_2$. Тогда:

$$Ax = AA^{-1}(y_1 + y_2) - AA^{-1}y_1 - AA^{-1}y_2 = (y_1 + y_2) - y_1 - y_2 = 0$$

$$x = (A^{-1}A)x = A^{-1}(Ax) = A^{-1}0 = 0$$

$$\Rightarrow A^{-1}(y_1 + y_2) = A^{-1}y_1 + A^{-1}y_2$$

2. Пусть $x = A^{-1}(ay) - aA^{-1}y$, где a - const. Тогда:

$$Ax = AA^{-1}(ay) - aAA^{-1}y = (ay) - ay = 0$$
$$x = (A^{-1}A)x = A^{-1}(Ax) = A^{-1}0 = 0$$
$$\Rightarrow A^{-1}(ay) = aA^{-1}y$$

Упражнение. 2.2 (страница 18) Доказать обратимость оператора.

Имеем:

$$\forall y \in Y \ \exists x \in X \ | \ Ax = y$$

Согласно этому строим соответствие (обозначим его через A^{-1}):

$$A^{-1}: y \to x$$

В силу инъективности оператора A данное соответствие является отображением.

Упражнение. 3.1 (страница 27)

1) Слабый предел определён единственным образом.

Пусть
$$x_n \xrightarrow[n \to \infty]{\text{слаб}} x_0$$
 и $x_n \xrightarrow[n \to \infty]{\text{слаб}} y_0$. Тогда $\forall f \in X^*$:

$$f(x_n) \xrightarrow[n \to \infty]{} f(x_0) \text{ if } f(x_n) \xrightarrow[n \to \infty]{} f(y_0)$$

Отсюда: $f(x_0) = f(y_0) \Rightarrow f(x_0 - y_0) = 0 \ \forall f$.

С другой стороны, по предположению $x_0 \neq y_0 \Rightarrow x_0 - y_0 \neq 0$. Тогда по следствию $3.1 \exists f_0 \mid f_0(x_0 - y_0) = ||x_0 - y_0|| \neq 0$

Противоречие, следовательно, $x_0 = y_0$.

2) Если последовательность $\{x_n\}$ слабо сходится к x_0 , то любая её подпоследовательность слабо сходится к x_0 .

Пусть $x_n \xrightarrow[n \to \infty]{\text{слаб}} x_0$. Тогда $\forall f \in X^* : f(x_n) \xrightarrow[n \to \infty]{} f(x_0)$. По свойству сходимости числовых последовательностей получаем:

$$f(x_{n_k}) \xrightarrow[k \to \infty]{} f(x_0) \Rightarrow x_{n_k} \xrightarrow[k \to \infty]{} x_0$$

3) Любая сильно (по норме) сходящаяся последовательность является слабо сходящейся.

Пусть $x_n \xrightarrow[n \to \infty]{} x_0$ сильно. Выберем произвольный $f \in X^*$. Рассмотрим:

$$|f(x_n) - f(x_0)| = |f(x_n - x_0)| \le ||f|| \cdot ||x_n - x_0|| \xrightarrow[n \to \infty]{} 0$$

Следовательно, $x_n \xrightarrow[n\to\infty]{\text{слаб}} x_0$.

В конечномерном пространстве: сильная ≡ слабая.

Пусть $x_n \xrightarrow[n \to \infty]{\text{слаб}} x_0$ и пусть X конечномерно. Тогда $\exists m \mid \{e_k\}_{k=1}^m - \text{ба-}$ зис, т.е

$$x_n = \sum_{k=1}^m \lambda_k^{(n)} e_k$$
 $x_0 = \sum_{k=1}^m \lambda_k^{(0)} e_k$

Рассмотрим $\{f_i\} \subset X^*$ такие, что $f_i(e_j) = \delta_i^j$. Тогда

$$f_i(x_n) = \lambda_i^{(n)}, \ f_i(x_0) = \lambda_i^{(0)} \quad \forall i = 1 \dots m$$

Получаем:

$$x_n \xrightarrow[n \to \infty]{\text{слаб}} x_0 \Rightarrow f(x_n) \xrightarrow[n \to \infty]{} f(x_0) \ \forall f \in X^* \Rightarrow$$
$$\Rightarrow f_i(x_n) \xrightarrow[n \to \infty]{} f_i(x_0) \ \forall i, \text{ r.e. } \lambda_i^{(n)} \xrightarrow[n \to \infty]{} \lambda_i^{(0)} \ \forall i$$

Но в конечномерном пространстве покоординатная сходимость влечёт за собой сходимость по норме, следовательно, $x_n \xrightarrow[n \to \infty]{} x_0$ сильно.

Упражнение. 4.1 (страница 31)

1) Ограниченность функционала сверху (снизу — аналогично). Докажем от противного. Пусть $\exists \{x_n\} \mid f(x_n) > n \ \forall n$.

Множество M компактно, следовательно

$$\exists \{x_{n_k}\} \subset \{x_n\} \mid x_{n_k} \xrightarrow[k \to \infty]{} x_0 \in M$$

Тогда, с одной стороны, $f(x_{n_k}) > n_k$, т.е. $f(x_{n_k}) \xrightarrow[k \to \infty]{} \infty$. С другой стороны, т.к. f непрерывен, то $f(x_{n_k}) \xrightarrow[k \to \infty]{} f(x_0)$. Пришли к противоречию, следовательно, f ограничен сверху.

2) Достижимость наибольшего значения (достижимость наименьшего значения показывается аналогично).

Определим

$$m = \sup_{x \in M} f(x)$$

По определению точной верхней грани получаем:

$$f(x) \leqslant m \quad \forall x \in M$$

 $\forall \varepsilon > 0 \; \exists x_{\varepsilon} \; | \; f(x_{\varepsilon}) > m - \varepsilon$

Следовательно, существует такая последовательность $\{x_n\}$, что

$$m - \frac{1}{n} < f(x_n) \leqslant m$$

Множество M компактно, следовательно

$$\exists \{x_{n_k}\} \subset \{x_n\} \mid x_{n_k} \xrightarrow[k \to \infty]{} x_0 \in M$$

Тогда

$$m - \frac{1}{n_k} < f(x_{n_k}) \leqslant m \implies \lim_{k \to \infty} f(x_{n_k}) = m$$
 f непрерывен $\Rightarrow \lim_{k \to \infty} f(x_{n_k}) = f(x_0) \Rightarrow f(x_0) = m$

Упражнение. 4.2 (страница 31) Необходимо доказать, что относительно компактное множество M компактно $\Leftrightarrow M$ замкнуто.

- (⇒) Пусть M компактно, тогда по утверждению 4.1 M замкнуто.
- (\Leftarrow) Пусть $\{x_n\} \subset M$. Т.к. M относительно компактно, то существует сходящаяся подпоследовательность $\{x_{n_k}\}$.

Множество M замкнуто, следовательно, $x_{n_k} \xrightarrow[k \to \infty]{} x_0 \in M$, что означает, что множество M компактно.

Упражнение. 4.3 (страница 32) Необходимо доказать относительную компактность множества M.

По условию

$$\forall \varepsilon>0$$
 $\exists M_{\frac{\varepsilon}{2}}$ — относительно компактная $\frac{\varepsilon}{2}$ —сеть для $M.$

По теореме 4.3 существует $M^{\circ}_{\frac{\varepsilon}{2}}$ — конечная $\frac{\varepsilon}{2}$ —сеть для $M_{\frac{\varepsilon}{2}}$. Тогда $M^{\circ}_{\frac{\varepsilon}{2}}$ является конечной ε —сетью для M, т.к.

$$\forall x \in M \; \exists x_1 \in M_{\frac{\varepsilon}{2}} \, \big| \, \|x - x_1\| < \frac{\varepsilon}{2}$$
 Для $x_1 \; \exists x_2 \in M_{\frac{\varepsilon}{2}}^{\circ} \, \big| \, \|x_1 - x_2\| < \frac{\varepsilon}{2}$

В итоге получаем

$$\forall x \in M \ \exists x_2 \in M^{\circ}_{\frac{\varepsilon}{2}} \ \big| \ \|x - x_2\| < \varepsilon$$

Таким образом, $M^{\circ}_{\frac{\varepsilon}{2}}$ — конечная $\varepsilon-$ сеть для M. По теореме 4.3 множество M является относительно компактным.

Упражнение. 4.4 (страница 32) Необходимо доказать сепарабельность относительно компактного множества M.

Рассмотрим последовательность $\{\varepsilon_n\} \mid \varepsilon_n \xrightarrow[n \to \infty]{} 0$. В силу теоремы 4.3 построим для $\forall \varepsilon_n$ конечную ε_n —сеть M_n для множества M.

Определим

$$M' = \bigcup_{i=1}^{\infty} M_n$$
— счётное подмножество M

Имеем

$$\forall \varepsilon > 0 \ \forall x \in M \ \exists n \in \mathbb{N} \ | \ \varepsilon_n < \varepsilon \$$
и $\exists x_n \in M_n \subset M' \ | \ ||x - x_n|| < \varepsilon_n$

Т.е. другими словами

$$\overline{M'} \supset M$$

Таким образом, построено счётное всюду плотное подмножество множества M, следовательно, M сепарабельно.

Упражнение. 4.7 (страница 38) Необходимо доказать, что всякое компактное множество в бесконечномерном нормированном пространстве является нигде не плотным.

Пусть $M\subset X,\, X$ — нормированное пространство, M компактно в X. Докажем от противного: пусть M не является нигде не плотным в X. Тогда

$$\exists B_R(x_0) \mid \forall B_{R_1}(x_1) \subset B_R(x_0) : B_{R_1}(x_1) \cap M \neq \emptyset$$

Пусть $x^* \in B_R(x_0)$. Определим

$$R_n = \frac{R - \|x^* - x_0\|}{n}$$

Рассмотрим $B_{R_n}(x^*)$. Пусть $x \in B_{R_n}(x^*)$

$$||x - x_0|| \le ||x - x^*|| + ||x^* - x_0|| \le \frac{R - ||x^* - x_0||}{n} + ||x^* - x_0|| < R$$

$$\Rightarrow B_{R_n}(x^*) \subset B_R(x_0)$$

Согласно предположению

$$\exists x_n: x_n \in B_{R_n}(x^*) \cap M$$

$$R_n \xrightarrow[n \to \infty]{} 0 \Rightarrow x_n \xrightarrow[n \to \infty]{} x^* \Rightarrow x^* \in \overline{M} \Rightarrow (\text{т.к. } x^* \text{ произвольный}) \Rightarrow B_R(x_0) \subset \overline{M} \Rightarrow \overline{B_R}(x_0) \subset \overline{M}$$

M компактно $\Rightarrow M = \overline{M} \Rightarrow \overline{B_R}(x_0)$ — замкнутое подмножество компактного множества $\Rightarrow \overline{B_R}(x_0)$ компактно в силу теоремы 4.4. Пришли к противоречию с утв. 4.4. Получаем, что M— нигде не плотно.

Упражнение. 4.8 (страница 38) Необходимо доказать, что всякое рефлексивное пространство является слабо полным.

Пусть $\{x_n\}$ слабо сходится. Тогда числовая последовательность $f(x_n)$ сходится $\forall f \in X^*$. По теореме 4.7 существует подпоследовательность

$$\{x_{n_k}\} \mid x_{n_k} \xrightarrow[k \to \infty]{} x_0; \ x_0 \in X^{**}$$

Так как X рефлексивное, то $X^{**} = X \Rightarrow x_0 \in X \Rightarrow X$ — слабо полное.